Skip to main content

Equilibrium, Kinetics and Mechanism of Removal of Methylene Blue from Aqueous Solution by Adsorption onto Pine Cone Biomass of Pinus radiata


The kinetics and mechanism of methylene blue adsorption onto raw pine cone biomass (Pinus radiata) was investigated under various physicochemical parameters. The extent of the methylene blue dye adsorption increased with increases in initial dye concentration, contact time and solution pH but decreases with the amount of adsorbent, salt concentration and temperature of the system. Overall the kinetic studies showed that the methylene blue adsorption process followed pseudo-second-order kinetics among various kinetic models tested. The different kinetic parameters including rate constant, half-adsorption time and diffusion coefficient are determined at different physicochemical conditions. Equilibrium data were best represented by Langmuir isotherm among Langmuir and Freundlich adsorption isotherm. The maximum monolayer adsorption capacity of pine cone biomass was 109.89 mg/g at 30°C. The value of separation factor, R L, from Langmuir equation and Freundlich constant, n, both give an indication of favourable adsorption. Thermodynamic parameters such as standard Gibbs free energy (∆G 0), standard enthalpy (∆H 0), standard entropy (∆S 0) and the activation energy (A) were calculated. A single-stage batch absorber design for the methylene blue adsorption onto pine cone biomass has been presented based on the Langmuir isotherm model equation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


A :

Activation energy of adsorption (kJ/mol)

C f :

Final metal ion concentration, ppm (mg/l)

C 0 :

Initial metal ion concentration, ppm (mg/l)

C t :

Metal ion concentration at time t, ppm (mg/l)


Diffusion coefficient (cm2/s)

∆G 0 :

Gibbs free energy change (kJ/mole)

∆H 0 :

Enthalpy change (kJ/mole)

∆S 0 :

Entropy change (J/k mole)

k 1 :

Pseudo-first-order rate constant (min−1)

k 2 :

Pseudo-second-order rate constant (mg/g min)

K f :

Freundlich adsorption constant (mg/g)

K id :

Intra-particle rate constant [(mg/g) min0.5]

M :

Mass of adsorbent per unit volume (g l−1)

m :

Amount of adsorbent added (g)

n :

Freundlich constant

q :

Amount of adsorbate per gram of adsorbent (mg/g)

q e :

Amount of adsorbate per gram of adsorbent at equilibrium, (mg/g)

q t :

Amount of adsorbate per gram of adsorbent at any time, t

q m :

Equilibrium adsorption capacity using model

q max :

Maximum adsorption capacity (mg/g)

R 2 :

Linear correlation coefficient

R L :

Separation factor

r 0 :

Radius of adsorbent particle (cm)

t :

Time (min)

T :

Temperature (K)

V :

Volume of the solution (ml)

β :



  • Abd EI-Latif, M. M., Ibrahim, A. M., & EI-Kady, M. F. (2010). Adsorption equilibrium, kinetics and thermodynamics of methylene blue from aqueous solutions using biopolymer oak sawdust composite. J. Am. Sci., 6(6), 267–283.

    Google Scholar 

  • Aksakal, O., & Ucun, H. (2010). Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye (Reactive Red 195) onto Pinus sylvestris. Journal of Hazardous Materials, 181, 666–672.

    Article  CAS  Google Scholar 

  • Annadurai, G., Juang, S. R., & Lee, J. D. (2002). Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. Journal of Hazardous Materials, B(92), 263–274.

    Article  Google Scholar 

  • Argun, M. E., Durun, S., Karatas, M., & Guru, M. (2008). Activation of pine cone using Fenton oxidation for Cd (II) and Pb(II) removal. Bioresource Technology, 99, 8691–8698.

    Article  CAS  Google Scholar 

  • Arias, F., & Sen, T. K. (2009). Removal of zinc metal ion (Zn2+) from its aqueous solution by kaolin clay mineral: A kinetic and equilibrium study. Colloids and Surfaces. A, 348, 100–108.

    Article  CAS  Google Scholar 

  • Basar, C. A. (2006). Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot. Journal of Hazardous Materials, B135, 232–241.

    Article  Google Scholar 

  • Bhattacharya, K. G., & Sharma, A. (2003). Adsorption characteristics of the dye, Brilliant green, on Neem leaf powder. Dyes and Pigments, 57, 211–222.

    Article  Google Scholar 

  • Bhattacharya, A. K., Mandal, S. N., & Das, S. K. (2006). Adsorption of Zn(II) from aqueous solution by using different adsorbents. Chemical Engineering Journal, 123, 43–51.

    Article  CAS  Google Scholar 

  • Bhattacharyya, K., & Sharma, A. (2005). Kinetics and thermodynamics of methylene blue adsorption on Neem leaf powder. Dyes and Pigments, 66, 51–59.

    Article  Google Scholar 

  • Dogan, M., Alkan, M., Turkyilmaz, A., & Ozdemir, Y. (2004). Kinetics and mechanism of removal of methylene blue by adsorption onto perlite. Journal of Hazardous Materials, B109, 141–148.

    Google Scholar 

  • Ferrero, F. (2007). Dye removal by low cost adsorbents: Hazelnut shells in comparison with wood sawdust. Journal of Hazardous Materials, 142, 144–152.

    Article  CAS  Google Scholar 

  • Freundlich, H. M. F. (1906). Ober die adsorption in losungen. The Journal of Physical Chemistry, 57, 385–470.

    CAS  Google Scholar 

  • Garg, V. K., Gupta, R., Yadav, A. B., & Kumar, R. (2003). Dye removal from aqueous solution by adsorption on treated sawdust. Bioresource Technology, 89, 121–129.

    Article  CAS  Google Scholar 

  • Garge, V. K., Amita, M., Kumar, R., & Gupta, R. (2004). Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian rosewood sawdust: A timber industry waste. Dyes and Pigments, 63, 243–250.

    Article  Google Scholar 

  • Haimour, N., & Sayed, S. (1997). Dirsat. Nat. Eng. Sci., 24(2), 215–224.

    CAS  Google Scholar 

  • Hall, K. R., Eagleton, L. C., Acrivos, A., & Vermeulen, T. (1966). Pore and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern condition. Industrial and Engineering Chemistry Fundamentals, 5, 212–223.

    Article  CAS  Google Scholar 

  • Han, R. P., Wang, Y. F., Han, P., Shi, J., Yang, J., & Lu, Y. S. (2006). Removal of methylene blue from aqueous solution by chaff in batch mode. Journal of Hazardous Materials, 137, 550–557.

    Article  CAS  Google Scholar 

  • Hao, J. O., Kim, H., & Chiang, P. C. (2000). Decolourization of wastewater. Critical Reviews in Environmental Science and Technology, 30, 449–505.

    Article  CAS  Google Scholar 

  • Hu, Q. H., Qiao, S. Z., Haghseresht, F., Wilson, M. A., & Lu, G. O. (2006). Adsorption study for removal of basic red dye using bentonite. Industrial and Engineering Chemistry Research, 45, 733–738.

    Article  CAS  Google Scholar 

  • Janos, P. H., Buchtova, M., & Ryznarova, M. (2003). Sorption of dyes from aqueous solutions onto fly ash. Water Research, 37, 4938–4944.

    Article  CAS  Google Scholar 

  • Jr Weber, W. J., & Morriss, J. C. (1963). Kinetics of adsorption on carbon from solution. J. Saint. Eng. Div. Am. Soc. Civ. Eng., 89, 31–60.

    Google Scholar 

  • Kumar, P. S., Ramalingam, S., Senthamarai, C., Niranjanaa, M., Vijayalakshmi, P., & Sivanesan, S. (2010). Adsorption of dye from aqueous solution by cashew nut shell: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Desalination, 261, 52–60. doi:10.1016/j.desal.2010.05.032.

    Article  Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1403.

    Article  CAS  Google Scholar 

  • Malash, G. F., & Ei-Khaiary, M. (2010). Methylene blue adsorption by the waste of abu-tartour phosphate rock. Journal of Colloid and Interface Science, 348, 537–545.

    Article  CAS  Google Scholar 

  • McKay, G., & Allen, S. J., Jr. (1983). Single resistance mass transfer models for the adsorption of dyes on peat. Journal of Separation Process Technology, 4(3), 1–7.

    CAS  Google Scholar 

  • Mohammad, M., Maitra, S., Ahmad, N., Bustam, A., Sen, T. K., & Dutta, B. K. (2010). Metal ion removal from aqueous solution using physic seed hull. Journal of Hazardous Materials, 179, 363–372.

    Article  CAS  Google Scholar 

  • Nandi, B. K., Goswami, A., & Purkait, M. K. (2009). Removal of cationic dyes from aqueous solutions by kaolin: Kinetic and equilibrium studies. Applied Clay Science, 42, 583–590.

    Article  CAS  Google Scholar 

  • Oei, B. C., Ibrahim, S., Wang, S., & Ang, H. M. (2009). Surfactant modified barley straw for removal of acid and reactive dyes from aqueous solution. Bioresource Technology, 100, 4292–4295.

    Article  CAS  Google Scholar 

  • Ofomaja, A. E., Naidoo, E. B., & Modise, S. J. (2009). Removal of copper (II) from aqueous solution by pine and base modified pine cone powder as biosorbent. Journal of Hazardous Materials, 168, 909–917.

    Article  CAS  Google Scholar 

  • Oladoja, N. A., Aboluwoya, C. O., Oladimeji, Y. B., Ashogbon, A. O., & Otemuyiwa, I. O. (2008). Studies on castor seed shell as a sorbent in basic dye contaminated wastewater remediation. Desalination, 227, 190–203.

    Article  CAS  Google Scholar 

  • Oliveira, L. S., Franca, A. S., Alves, T. M., & Rocha, S. D. F. (2008). Evaluation of untreated coffee husks as potential biosorbents for treatment of dye contaminated waters. Journal of Hazardous Materials, 155(3), 507–512.

    Article  CAS  Google Scholar 

  • Ozcan, A. S., Erdem, B., & Ozcan, A. (2005). Adsorption of acid blue 193 from aqueous solutions onto BTMA-bentonite. Colloids and Surfaces. A, 266, 73–81.

    Article  Google Scholar 

  • Ozer, D., Dursun, G., & Ozer, A. (2007). Methylene blue adsorption from aqueous solution by dehydrated peanut hull. Journal of Hazardous Materials, 144, 171–179.

    Article  Google Scholar 

  • Pavan, F. A., Lima, C. E., Dias, S. L. P., & Mazzocato, C. A. (2008). Methylene blue biosorption from aqueous solution by yellow passion fruit waste. Journal of Hazardous Materials, 150, 703–712.

    Article  CAS  Google Scholar 

  • Ponnusami, V., Vikram, S., & Srivastava, S. N. (2008). Guava leaf powder: Novel adsorbent for removal of methylene blue from aqueous solution. Journal of Hazardous Materials, 152(1), 276–286.

    Article  CAS  Google Scholar 

  • Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2009). Adsorption of methylene blue on low-cost adsorbents; a review. Journal of Hazardous Materials, 177, 70–80. doi:10.1016/j.jhazmat.2009.12.047.

    Article  Google Scholar 

  • Rajeshwarisivaraj, S., Namasivayam, C., & Kardivelu, K. (2001). Orange peel as an adsorbent in the removal of acid violet 17 from aqueous solutions. Waste Management, 21, 1437–1445.

    Google Scholar 

  • Rengaraj, S., Kim, Y., Joo, C. K., Choi, K., & Yi, Y. (2004). Batch adsorptive removal of copper ions in aqueous solutions by ion exchange resigns. Korean Journal of Chemical Engineering, 21(1), 187–194.

    Article  CAS  Google Scholar 

  • Robinson, T., Chandran, B., & Nigam, P. (2002). Removal of dyes from artificial textile dye effluent by two agricultural waste residues corncob and barley husk. Environment International, 28, 29–35.

    Article  CAS  Google Scholar 

  • Rosemal, H. M., Haris, M., & Sathasivam, K. (2009). The removal of methyl red from aqueous solution using banana pseudostem fibers. Am. J. Appl. Sci., 6(9), 1690–1700.

    Article  Google Scholar 

  • Sen, T. K., & Sarzali, M. V. (2008). Removal of cadmium metal ion (Cd2+) from its aqueous solution by aluminium oxide (Al2O3): A kinetic and equilibrium study. Chemical Engineering Journal, 142, 256–262.

    Article  CAS  Google Scholar 

  • Shahryari, Z., Goharrizi, A. S., & Azadi, M. (2010). Experimental study of methylene blue adsorption from aqueous solutions onto carbon nano tubes. Int. J. Water Resour. Environ. Eng., 2(2), 16–28.

    Google Scholar 

  • Sharma, Y. C., & Uma. (2010). Optimization of parameters for adsorption of methylene blue on a low-cost activated carbon. Journal of Chemical and Engineering Data, 55, 435–439.

    Article  CAS  Google Scholar 

  • Sharma, P., Kaur, R., Baskar, C., & Chung, W. J. (2010). Removal of methylene blue from aqueous waste using rice husk and rice husk ash. Desalination, 259, 249–257.

    Article  CAS  Google Scholar 

  • Srinivasan, A., & Viraraghavan, T. (2010). Decolourization of dye wastewaters by biosorbent: A review. Journal of Environmental Management, 91, 1915–1929. doi:10.1016/j.jenvman.2010.05.003.

    Article  CAS  Google Scholar 

  • Tan, I. A. W., Hameed, B. H., & Ahmad, A. L. (2007). Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon. Chemical Engineering Journal, 127, 111–119.

    Article  CAS  Google Scholar 

  • Tarawou, T., & Horsfall, M. (2007). Adsorption of methylene blue dye on pure and carbonised water weeds. Bioremediation J., 11(2), 77–84.

    Article  CAS  Google Scholar 

  • Ucun, H., Kemal, Y., Kaya, Y., Cakici, A. & Algur, O. F. (2002). Biosorption of chromium (VI) from aqueous solution by cone biomass of Pinus Sylvestries. Biresource Technology, 85, 155–158.

    Google Scholar 

  • Ucun, H., Bayhan, Y. K., Kaya, Y., Cakici, A., & Algur, O. F. (2003). Biosorption of lead (II) from aqueous solution by cone biomass of Pinus sylvestris. Desalination, 154, 233–238.

    Article  CAS  Google Scholar 

  • Vadivelan, V., & Kumar, K. V. (2005). Equilibrium, kinetics, mechanism and process design for the sorption of methylene blue onto rice husk. Journal of Colloid and Interface Science, 286, 90–100.

    Article  CAS  Google Scholar 

  • Vilar, V. J. P., Botelho, C. M. C., & Boaventura, R. A. R. (2007). Methylene blue adsorption by algal biomass based materials. Journal of Hazardous Materials, 147, 120–132.

    Article  CAS  Google Scholar 

  • Vimonses, V., Lei, S., Jin, B., Chow, C. W. K., & Saint, C. (2009). Kinetic study and equilibrium isotherm analysis of Congo red adsorption by clay materials. Chemical Engineering Journal, 148, 354–364.

    Article  CAS  Google Scholar 

  • Visa, M., Bogatu, C., & Dutta, A. (2009). Simultaneous adsorption of dyes and heavy metals from multicomponent solutions using fly ash. Applications of Surface Science, 256, 5486–5491. doi:10.1016/j.apsusc.2009.12.145.

    Google Scholar 

  • Wang, S., Zhu, Z. H., Coomes, A., Haghseresht, F., & Lu, G. Q. (2005). The physical and surface chemical characteristics of activated carbons and the adsorption of methylene blue from wastewater. Journal of Colloid and Interface Science, 284, 440–446.

    Article  CAS  Google Scholar 

  • Wang, X. S., Zhou, Y., Jiang, Y., & Sun C. (2008). The removal of basic dyes from aqueous solutions using agricultural by products. J. Hazardous Materials, 157, 374–385.

    Google Scholar 

  • Waranusantigul, P., Pokethitiyook, P., Kruatrachue, M., & Upatham, E. S. (2003). Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza). Environmental Pollution, 125, 385–392.

    Article  CAS  Google Scholar 

  • Yao, Z. L., Wang, J., & Qi. (2009). Biosorption of methylene blue from aqueous solution using a bioenergy forest waste: Xanthoceras sorbifolia seed coat. Clean, 37(8), 642–648.

    CAS  Google Scholar 

Download references


Chemical Engineering Department of Curtin University of Technology, Perth for financial support through internal funding project entitled “Metal Ion Adsorption”, Professor De-Yu Li of Physics Department for help in taking XRD, Ann Carroll of Chemical Department for laboratory helping and Zhezi Zhang for FTIR analysis.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Tushar Kanti Sen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sen, T.K., Afroze, S. & Ang, H.M. Equilibrium, Kinetics and Mechanism of Removal of Methylene Blue from Aqueous Solution by Adsorption onto Pine Cone Biomass of Pinus radiata . Water Air Soil Pollut 218, 499–515 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Pinus radiata
  • MB adsorption
  • Kinetic model
  • Isotherm
  • Diffusion