Skip to main content
Log in

Transport of Strontium Through a Ca-bentonite (Almería, Spain) and Comparison with MX-80 Na-bentonite: Experimental and Modelling

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this work, the sorption of strontium on a Ca-bentonite (CGA) from Almería (Spain) in column experiments was studied, and the results obtained were compared with the sorption onto the Na-bentonite (MX-80). The code CTXFIT (two site non-equilibrium sorption model) was used in order to fit the experimental data and to determine sorption and transport parameters. The effect of inlet Sr(II) initial concentration and the ionic strength were evaluated. The results obtained showed that the sorption capacities as well as the transport and sorption parameters of both bentonites were affected by the initial metal concentration. In experiments with higher inlet concentrations, columns were saturated faster, leading to shorter breakthrough and exhaustion times. On the other hand, a decrease of sorption and transport parameters was observed at higher ionic strengths, which would confirm ion exchange as the main mechanism of Sr(II) sorption onto both bentonites. The sorption parameters (sorption capacity and retardation factor) obtained indicated that the Ca-bentonite from Almería (Spain) presented better sorption performance than the Na-bentonite, which was related to the physical properties of the Ca-bentonite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Degs, Y. S., Khraisheh, M. A. M., Allen, S. J., & Ahmad, M. N. (2009). Adsorption characteristics of reactive dyes in columns of activated carbon. Journal of Hazardous Materials, 165, 944–949.

    Article  CAS  Google Scholar 

  • Bajracharya, K., & Barry, D. A. (1995). MCMFIT—efficient optimal fitting of a generalized nonlinear advection-dispersion model to experimental-data. Computers and Geosciences, 21, 61–76.

    Article  Google Scholar 

  • Baston, G. M. N., Berry, J. A., Brownsword, M., Cowper, M. M., Heath, T. G., & Tweed, T. J. (1995). The sorption of uranium and technetium on bentonite, tuff and granodiorite. Materials Research Society Symposium Proceedings, 353, 989–996.

    Article  CAS  Google Scholar 

  • Boult, K. A., Cowper, M. M., Heath, T. G., Sato, H., Shibutani, T., & Yui, M. (1998). Towards an understanding of the sorption of U(VI) and Se(IV) on sodium bentonite. Journal of Contaminant Hydrology, 35, 141–150.

    Article  CAS  Google Scholar 

  • Bucher, F., & Müller-Vonmoos, M. (1989). Bentonite as a containment barrier for the disposal of highly radioactive waste. Applied Clay Science, 4, 157–177.

    Article  CAS  Google Scholar 

  • Cameron, D. R., & Klute, A. (1977). Convective–dispersive solute transport with a combined equilibrium and kinetic adsorption model. Water Resources Research, 13, 183–188.

    Article  CAS  Google Scholar 

  • Choi, J. W., & Oscarson, D. W. (1996). Diffusive transport through compacted Na- and Ca- bentonite. Journal of Contaminant Hydrology, 22, 189–202.

    Article  CAS  Google Scholar 

  • Eriksen, T. E., Jansson, M., & Molera, M. (1999). Sorption effects on cation diffusion in compacted bentonite. Engineering Geology, 54, 231–236.

    Article  Google Scholar 

  • Florido, A., Valderrama, C., Arévalo, J. A., Casas, I., Martínez, M., & Miralles, N. (2010). Application of two sites non-equilibrium sorption model for the removal of Cu(II) onto grape stalk wastes in a fixed-bed column. Chemical Engineering Journal, 156, 298–304.

    Article  CAS  Google Scholar 

  • Galamboš, M., Kufčáková, J., & Rajec, P. (2009). Sorption of strontium on Slovak bentonites. Journal of Radioanalytical and Nuclear Chemistry, 281, 347–357.

    Article  Google Scholar 

  • Goud, V. V., Mohanty, K., Rao, M. S., & Jayakumar, N. S. (2005). Prediction of mass transfer coefficients in a packed bed using tamarind nut shell activated carbon to remove phenol. Chemical Engineering and Technology, 28, 991–997.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Srivastava, S. K., & Tyagi, R. (2000). Design parameters for the treatment of phenolic wastes by carbon columns (obtained from fertilizer waste material). Water Research, 34, 1543–1550.

    Article  CAS  Google Scholar 

  • Huertas, F., Cantillana, J. L. F., Jullien, F., Rivas, P., Linares, J., Fariña, P., et al. (2000). FEBEX project Final Report. EUR 19147.

  • Hurel, C., Marmier, N., Bourg, A. C. M., & Fromage, F. (2009). Sorption of Cs and Rb on purified and crude MX-80 bentonite in various electrolytes. Journal of Radioanalytical and Nuclear Chemistry, 279, 113–119.

    Article  CAS  Google Scholar 

  • Kamra, S. K., Lennartz, B., Van Genuchten, M. T., & Widmoser, P. (2001). Evaluating non-equilibrium solute transport in small soil columns. Journal of Contaminant Hydrology, 48, 189–212.

    Article  CAS  Google Scholar 

  • Khan, S. A., Rehman, U. R., & Khan, M. A. (1995). Sorption of strontium on bentonite. Waste Management, 15, 641–650.

    Article  CAS  Google Scholar 

  • Kruse, K., (1993). Die Adsorption von Schwermetallen an verschiedene Tone. ETH- Dissertation 9737, Veröffentlichungen des Instituts für Geotechnik (IGT), Zürich.

  • Madsen, F. T. (1998). Clay mineralogical investigations related to nuclear waste disposal. Clay Minerals, 33, 109–129.

    Article  CAS  Google Scholar 

  • Madsen, F. T., & Müller-Vonmoos, M. (1989). The swelling behaviour of clays. Applied Clay Science, 4, 143–156.

    Article  CAS  Google Scholar 

  • Malkoc, E., & Nuhoglu, Y. (2006). Removal of Ni(II) ions from aqueous solutions using waste of tea factory: Adsorption on a fixed-bed column. Journal of Hazardous Materials, 135, 328–336.

    Article  CAS  Google Scholar 

  • Mao, M., & Ren, L. (2004). Simulating nonequilibrium transport of atrazine through saturated soil. Ground Water, 42, 500–508.

    Article  CAS  Google Scholar 

  • Missana, T., & García-Gutiérrez, M. (2007). Adsorption of bivalent ions (Ca(II), Sr(II) and Co(II)) onto FEBEX bentonite. Physics and Chemistry of the Earth, 32, 559–567.

    Google Scholar 

  • Missana, T., García-Gutiérrez, M., & Alonso, U. (2004). Kinetics and irreversibility of cesium and uranium sorption onto bentonite colloids in a deep granitic environment. Applied Clay Science, 26, 137–150.

    Article  CAS  Google Scholar 

  • Muurinen, A., Pentillä-Hiltunen, P., & Rantanen, J. (1987). Diffusion mechanisms of strontium and cesium in compacted sodium bentonite. Materials Research Society Symposium Proceedings, 84, 803–812.

    CAS  Google Scholar 

  • Nagasaki, S., Tanaka, S., & Suzuki, A. (1999). Sorption of neptunium on bentonite and its migration in geosphere. Colloids and Surfaces. A, 155, 137–143.

    Article  CAS  Google Scholar 

  • Neall, F. B., Baertschi, P., McKinley, I. G., Smith, P. A., Sumerling, T., & Umeki, H. (1995). Comparison of the concepts and assumptions in five recent HLW/spent fuel performance assessments. Materials Research Society Symposium Proceedings, 353, 503–510.

    Article  CAS  Google Scholar 

  • Shibutani, T., Yui, M., & Yoshikawa, H. (1994). Sorption mechanism of Pu, Am and Se on sodium bentonite. Materials Research Society Symposium Proceedings, 333, 725–732.

    Article  CAS  Google Scholar 

  • Srivastava, V. C., Malla, I. D., & Mishra, I. M. (2009). Competitive adsorption of cadmium(II) and nickel(II) metal ions from aqueous solution onto rice husk ash. Chemical Engineering Progress: Process Intensification, 48, 370–379.

    Article  CAS  Google Scholar 

  • Toride, N., Leij, F. J., & van Genuchten, M. T. (1995). The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments. U.S. Salinity Laboratory, U.S. Department of Agriculture Riverside, California, 137.

  • Tsai, S. C., Ouyang, S., & Hsu, C. N. (2001). Sorption and diffusion behaviour of Cs and Sr on Jih-Hsing bentonite. Applied Radiation and Isotopes, 54, 209–215.

    Article  CAS  Google Scholar 

  • Tsang, D. C. W., Zhang, W., & Lo, I. M. C. (2007). Modeling cadmium transport in soils using sequential extraction, batch, and miscible displacement experiments. Soil Science Society of America Journal, 71, 674–681.

    Article  CAS  Google Scholar 

  • Valderrama, C., Arévalo, J. A., Casas, I., Martínez, M., Miralles, N., & Florido, A. (2010). Modelling of the Ni(II) removal from aqueous solutions onto grape stalk wastes in fixed-bed column. Journal of Hazardous Materials, 174, 144–150.

    Article  CAS  Google Scholar 

  • van Genuchten, M. T. (1993). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892–898.

    Article  Google Scholar 

  • Wang, X. K., Chen, Y. X., & Wu, Y. C. (2004). Sorption and desorption of radiostrontium on powdered bentonite: effect of pH and fulvic acid. Journal of Radioanalytical and Nuclear Chemistry, 261, 497–500.

    Article  CAS  Google Scholar 

  • Wang, X. K., Chen, C. L., Zhou, X., Tan, X. L., & Hu, W. P. (2005). Diffusion and sorption of U(VI) in compacted bentonite studied by a capillary method. Radiochimica Acta, 93, 273–278.

    Article  CAS  Google Scholar 

  • Wang, T. H., Li, M. H., & Teng, S. P. (2009). Bridging the gap between batch and column experiments: a case study of Cs adsorption on granite. Journal of Hazardous Materials, 161, 409–415.

    Article  CAS  Google Scholar 

  • Wanner, H., Albinsson, Y., & Wieland, E. (1996). A thermodynamic surface model for caesium sorption on bentonite. Fresenius' Journal of Analytical Chemistry, 354, 763–769.

    CAS  Google Scholar 

  • Wieland, E., Wanner, H., Albinsson, Y., Wersin, P., & Karnland, O. (1994). A surface chemical model of the bentonite–water interface and its implications for modelling the near-field chemistry in a repository for spent fuel. SKB Technical Report No. 94-26 SKB, Stockholm.

  • Xu, D., Wang, X. K., Chen, C. L., Zhou, X., & Tan, X. L. (2006). Influence of soil humic acid on sorption of thorium(IV) on MX-80 bentonite. Radiochimica Acta, 94, 429–434.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the Spanish ‘Ministerio de Ciencia e Innovación’ by means of the PAIS Project (CGL2008-06373-C03-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Valderrama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valderrama, C., Giménez, J., de Pablo, J. et al. Transport of Strontium Through a Ca-bentonite (Almería, Spain) and Comparison with MX-80 Na-bentonite: Experimental and Modelling. Water Air Soil Pollut 218, 471–478 (2011). https://doi.org/10.1007/s11270-010-0660-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0660-1

Keywords

Navigation