Skip to main content

Advertisement

Log in

Assessment of Critical Loads in Tropical Sal (Shorea robusta Gaertn. F.) Forests of Doon Valley Himalayas, India

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The present study was conducted in tropical Sal forest ecosystem of the Doon valley in the Indian Himalayas to assess the critical load of sulfur and nitrogen and their exceedances. The observed pattern of throughfall ionic composition in the study are Ca2+>K+>Mg2+>Cl> HCO3> Na+>NO 3 > SO 2−3 ≥ NH +4 >F. The sum of cation studied is 412.29 μeq l−1 and that of anions is 196.98 μeq l−1, showing cation excess of 215.31 μeq l−1. The cations, namely Ca2+, Mg2+, K+, Na+, and NH +4 , made a contribution of about 67% of the total ion strength, where as anion comprising of SO 2−4 , Cl, NO 3 , and HCO 3 contributed 33%. The chief acidic components were Cl (12%) and HCO 3 (8%), while the presence of SO 2−4 (5%) and NO 3 (6%), respectively. Percentage contribution of bole to total aboveground biomass was ∼72.38% in comparison to 2.24–2.93% of leaf biomass, 10.34–10.96% of branch biomass and 13.21–17.07% of bark biomass. There was high and significant variation (P < 0.001) in the total aboveground biomass produced at different sites. The aboveground net primary productivity (ANPP) in these sites ranged between 2.09 and 9.22 t ha−1 year−1. The base cations and nitrogen immobilization was found to be maximum in bole. The net annual uptake of the base cations varied from 306.85 to 1,311.46 eq ha−1 year−1 and of nitrogen from 68.27 to 263.51 eq ha−1 year−1. The critical appraisal of soil showed that cation exchange capacity lied between 18.37 and 10.30 Cmol (p+) kg−1. The base saturation percentage of soil was as high as 82.43% in Senkot, whereas in Kalusidh it was just 44.28%. The local temperature corrected base cation weathering rates based on soil mineralogy, parent material class, and texture class varied from 484.15 to 627.25 eq ha−1 year−1, showing a weak potentiality of the system to buffer any incoming acidity and thus providing restricted acid neutralizing capacity to keep the ecosystem stable under increased future deposition scenarios in near future. The appreciable BS of the soil indicates the presence of intense nutrient phytorecycling forces within this climate and atmospheric deposition in replenishing base cations in the soil, which includes intrinsic soil-forming processes, i.e., weathering. The highest value of critical load for acidity was 2,896.50 eq ha−1 year−1 and the lowest was 2,792.45 eq ha−1 year−1. The calculated value of the minimum critical loads for nitrogen varied from 69.77 to 265.01 eq ha−1 year−1, whereas the maximum nitrogen critical load ranged between 2,992.63 and 4,394.45 eq ha−1 year−1. The minimum and the maximum critical loads of sulfur ranged between 2,130.49 and 3,261.64 eq ha−1 year−1 and 2,250.58 and 3,381.73 eq ha−1 year−1, respectively. The values of exceedance of sulfur and nitrogen were negative, implying that in the current scenario Sal forests of the Doon valley are well protected from acidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arp, P. A., Oja, T., & Marsh, M. (1996). Calculating critical S and N loads and current exceedances for upland forests in Southern Ontario, Canada. Canadian Journal of Forest Research, 26, 696–709.

    Article  CAS  Google Scholar 

  • Balachandran, S., & Khillare, P. S. (2001). Occurrence of acid rain over Delhi. Environmental Monitoring and Assessment, 71(2), 165–176.

    Article  CAS  Google Scholar 

  • Balasubramanian, G., Udayasoorian, C., & Prabu, C. (2007). Effects of short-term exposure of simulated acid rain on the growth of Acacia nilotica. Journal of Tropical Forest Science, 19(4), 198–206.

    Google Scholar 

  • Banerjee, D. (2008). Study of precipitation chemistry over an industrial city. International Journal of Environmental Science and Technology, 5(3), 331–338.

    CAS  Google Scholar 

  • Bashkin, V. N., Kozlov, M. Y., Priputina, I. V., Abramychev, A. Y., & Dedkova, I. S. (1995). Calculation and mapping of critical loads of S, N and acidity on ecosystems of the Northern Asia. Water, Air, and Soil Pollution, 85(4), 2395–2400.

    Article  CAS  Google Scholar 

  • Bauer, S. E., Koch, D., Unger, N., Metzger, S. M., Shindell, D. T., & Streets, D.G. (2007). Nitrate aerosols today and in 2030: a global simulation including aerosols and tropospheric ozone. Atmos. Chem. Phys. 7, 5043–5059.

    Article  CAS  Google Scholar 

  • Bhattacharya, A., Mudgal, R., & Tanjea, A. (2004). Acid deposition and critical load analysis in Agra, India. Journal of Hazardous Materials, 106(2–3), 157–160.

    Article  CAS  Google Scholar 

  • Bobbinik, R., & Roelofs, J. G. M. (1995). Ntirogen critical loads for natural and semi natural ecosystems: The empirical approach. Water, Air, Soil Pollution, 85, 2413–2418.

    Article  Google Scholar 

  • Bosman, B., Remacle, J., & Carnol, M. (2001). Elemental removal in harvested tree biomass, scenarios for critical load in Wallonia, South Belgium. Water, Air, & Soil Pollution: Focus, 1, 153–167.

    Article  CAS  Google Scholar 

  • Bowden, R. D., Geballe, G. T., & Bowden, W. B. (1989). Foliar uptake of 15N from simulated cloud water by red spruce (Picea rubens) seedlings. Canadian Journal of Forest Research, 19(3), 382–386.

    Article  Google Scholar 

  • Brown, G., & Brindley, G. W. (1980). X-ray diffraction procedures for clay mineral identification. In G. W. Brindley & G. Brown (Eds.), Crystal structures of clay minerals and their X-ray identification (pp. 305–360). London: Mineralogical Society.

    Google Scholar 

  • Cady, J. G. (1965). Petrographic microscope technique. In C. A. Black (Ed.), Methods of soil analysis. Part I: Physical and mineralogical properties. Madison: Am Soc Agron Inc.

    Google Scholar 

  • Carmichael, G. R., Tang, Y., Kurata, G., Uno, I., Streets, D. G., Thongboonchoo, N., et al. (2003). Evaluating regional emissions estimates using the TRACE-P observations. Journal of Geophysical Research, 108, 8810.

    Article  CAS  Google Scholar 

  • Champion, H. G., & Seth, S. K. (1968). A revised classification of the forest types in India. New Delhi: GoI.

    Google Scholar 

  • Chandravanshi, C. K., Patel, V. K., & Patel, K. S. (1997). Acid rain in Korba City of India. Indian Journal of Environmental Protection, 17, 658–661.

    Google Scholar 

  • Chave, J., Olivier, J., Bongers, F., Chatelet, P., Forget, P., van der Meer, P., et al. (2008). Above-ground biomass and productivity in a rain forest of eastern South America. Journal of Tropical Ecology, 24, 355–366.

    Article  Google Scholar 

  • Chiwaa, M., Crossleyb, A., Sheppardb, L. J., Sakugawaa, H., & Cape, J. N. (2004). Throughfall chemistry and canopy interactions in a Sitka spruce plantation sprayed with six different simulated polluted mist treatments. Environmental Pollution, 127, 57–64.

    Article  CAS  Google Scholar 

  • Choubey, V. M., Bartarya, S. K., Saini, N. K., & Ramola, R. C. (2001). Radon measurements in groundwater of inter-montane Doon valley, Outer Himalaya; effects of geohydrology and neotectonic activity. Environmental Geology, 40(3), 257–266.

    Article  CAS  Google Scholar 

  • Clark, D. A., Brown, S., Kicklighter, D., Chambers, J. Q., Thomlinson, J. R., NI, J., et al. (2001). Net primary production in tropical forests: An evaluation and synthesis of existing field data. Ecological Applications, 11, 371–384.

    Article  Google Scholar 

  • Droge, R., & Kroezea, C. (2007). Critical load exceedance for nitrogen in the Ebrie Lagoon (Ivory Coast): A first assessment. Journal of Integrative Environmental Science, 41, 5–19.

    Article  Google Scholar 

  • Duan, L., Xie, S., Zhou, Z., & Hao, J. (2000). Critical loads of acid deposition on soil in China. Water, Air, and Soil Pollution, 118, 35–51.

    Article  CAS  Google Scholar 

  • Duan, L., Xie, S., Zhou, Z., Ye, X., & Hao, J. (2001). Calculation and mapping of critical loads for S, N and acidity in China. Water, Air, and Soil Pollution, 130, 1199–1204.

    Article  Google Scholar 

  • Eswaran, H., Reich, P., & Beinroth, F. (1997). Global distribution of soils with acidity. In A. C. Moniz, A. M. C. Furlani, R. E. Schaffert, N. K. Fageria, C. A. Rosolem, & H. Cantarella (Eds.), Plant–soil interactions at low pH (pp. 159–164). Brazil: Brazilian Society of Soil Science.

    Google Scholar 

  • Field, C. B., Behrenfeld, M. J., Randerson, J. T., & Falkowski, P. (1998). Primary production of the biosphere: Integrating terrestrial and oceanic components. Science, 281, 237–240.

    Article  CAS  Google Scholar 

  • Foell, W. K., Green, C., Amann, M., Bhattacharaya, S., Carmichael, G., Chadwick, M., et al. (1995). Energy use, emissions and air pollution reduction strategies in Asia. Water, Air, and Soil Pollution, 85, 2272–2282.

    Article  CAS  Google Scholar 

  • Galloway, J. N. (1989). Atmospheric acidification: Projections for the future. Ambio, 18(3), 161–166.

    Google Scholar 

  • Galloway, J. N. (1995). Acid deposition perspective in time & space. Water, Air, and Soil Pollution, 85, 15–24.

    Article  CAS  Google Scholar 

  • Galloway, J. N. (1998). The global nitrogen cycles: Changes & consequences. Environmental Pollution, 102(1), 15–24.

    Article  CAS  Google Scholar 

  • Galloway, J. N. (2001). Acidification of the world: Natural and anthropogenic. Water, Air, and Soil Pollution, 130, 17–21.

    Article  CAS  Google Scholar 

  • Galloway, J. N., Levy, H., II, & Kasibhatia, P. S. (1994). Year 2020: Consequences of population growth & development on deposition of oxidised nitrogen. Ambio, 23(2), 120–123.

    Google Scholar 

  • Garg, A., Bhattacharya, S., & Dadhwal, V. K. (2001). Regional and sectoral assessment of greenhouse gas emissions in India. Atmospheric Environment, 35, 2679–2695.

    Article  CAS  Google Scholar 

  • Garg, A., Shukla, P. R., Bhattacharya, S., & Dadhwal, V. K. (2001). Sub-region (district) and sector level SO2 and NOx emissions for India: Assessment of inventories and mitigation flexibility. Atmospheric Environment, 35, 703–713.

    Article  CAS  Google Scholar 

  • Gautam, M. K. (2007). Study of critical load of air borne sulphur and nitrogen induced acidification of the forest soils of Doon valley. D. Phil., Thesis, Forest Research Institute, Dehra Dun (Uttarakhand), India.

  • Gautam, M. K., Tripathi, A. K., & Manhas, R. K. (2006). Changes in the scenario of dominance and diversity in Shorea robusta Gaertn. F. (Sal) forests of Lacchiwala, Doon valley, India. Industria Forestal, 132(12), 1645–1652.

    Google Scholar 

  • Gay, D. W., & Murphy, C. E. (1989). Measurement of the deposition and fate of sulfur-dioxide-35 in a pine plantation. Journal of Environmental Quality, 18, 337–344.

    Article  CAS  Google Scholar 

  • George, M. (1979). Nutrient return by stem-flow, throughfall and rainwater in Eucalyptus hybrid plantation. Industria Forestal, 105, 493–499.

    CAS  Google Scholar 

  • Gillett, R. W., Ayers, G. P., Selleck, P. W., Tuti, M., & Harjanto, H. (2004). Concentrations of nitrogen and sulfur species in gas and rainwater from six sites in Indonesia. Water, Air, and Soil Pollution, 120(3–4), 205–215.

    Google Scholar 

  • Golley, F.B. and Leith, H.C. (1972). Bases of organic production in tropics. Symposium on Tropical Ecology with and Emphasis on Organic Production. Georgia, U.S.A: Institute of Ecology, Univ. of Georgia, Athens

  • Hayashi, K., & Okazaki, M. (2001). Acid deposition and critical load map of Tokyo. Water, Air, and Soil Pollution, 130, 1211–1216.

    Article  Google Scholar 

  • Haywood, J. K. (1905). Injury to vegetation by smelter fumes. Bureau of Chemistry. Bulletin No. 89. Washington DC: Govt. Printing Press Office.

    Google Scholar 

  • Heiskala, P. J., Johansson, M., Holmberg, M., Mattsson, T., Forsius, M., Kortelainen, P., et al. (2003). Long-term base cation balances of forest mineral soils in Finland. Water, Air, and Soil Pollution, 150, 255–273.

    Article  Google Scholar 

  • Hess, T. (2002). AWSER, Potential evapotranspiration program for automatic weather stations. Version 3.0. Institute of Water and Environment, Cranfield University, Silsoe, UK

  • Hettelingh, J. P., Downing, R. J., & de Smat, P. A. M. (1991). Mapping critical loads for Europe, C.C.E technology Reports No. 1, Report No. 259101001. Bilthoven: National Institute of Public Health and the Environment (RIVM).

    Google Scholar 

  • Hettelingh, J. P., Posch, M., de Smat, P. A. M., & Downing, R. J. (1995). The use of critical loads in emissions reductions agreements in Europe. Water, Air, and Soil Pollution, 85, 2381–2388.

    Article  CAS  Google Scholar 

  • Hicks, W. K., Kuylenstierna, J. C. I., Owen, A., Dentener, F., Seip, H. M., & Rodhe, H. (2008). Soil sensitivity to acidification in Asia: Status and prospects. Ambio, 37(4), 295–303.

    Article  CAS  Google Scholar 

  • Hodson, M. E., Langan, S. J., & Lumsdon, D. G. (1998). A comparison of soil sensitivity to acidification based on laboratory determined short-term acid buffering capacity and the Skokloster Classification. Water, Air, and Soil Pollution, 105, 53–62.

    Article  CAS  Google Scholar 

  • Högstrom, U. (1973). Residence time of sulphurous air pollutants from a local source during precipitation. Ambio, 2(1–2), 37–41.

    Google Scholar 

  • IPCC. (2001). Climate change. The scientific basis. Atmospheric chemistry and greenhouse gases. UNEP, pp 241–260.

  • Jackson, M. L. (1967). Soil chemical analysis. New Delhi: Prentice Hall of India, Pvt. Ltd.

    Google Scholar 

  • Jackson, R. B., Canadell, J., Ehleringer, J. R., Monney, H. A., Sala, O. E., & Schultze, E. D. (1996). A global analysis of root distributions for terrestrial biomes. Oecologia, 108, 389–411.

    Article  Google Scholar 

  • Johnson, D. W., & Lindberg, S. E. (1992). Atmospheric deposition and forest nutrient cycling. New York: Springer.

    Google Scholar 

  • Kalra, Y. P., & Maynard, D. G. (1991). Organic Carbon determination by Wet Digestion (Modified Walkley-Black Procedure). In Y. P. Kalra, & D. G. Maynard (Eds.), Methods manual for forest soil and plant analysis (pp. 27–30). Information Report NOR-X-319. Forestrt Canada, Northwest Region. Alberta, Canada: Northern Forestry Centre.

  • Kato, N., & Akimoto, H. (1992). Anthropogenic emissions of SO2 and NOx in Asia: Emission inventories. Atmospheric Environment, 26(16), 2997–3017.

    Google Scholar 

  • Khemani, L. T., Momin, G. A., Naik, M. S., Rao, P. S. P., Kumar, R., & Ramana Murty, Bh V. (1985). Impact of alkaline particulates on the pH of rain water in India. Water, Air, and Soil Pollution, 24, 365–376.

    Article  Google Scholar 

  • Khemani, L. T., Momin, G. A., Rao, P. S. P., Safai, P. D., Singh, G., & Kapoor, R. K. (1989). Spread of acid rain over India. Atmospheric Environment, 23(4), 757–762.

    Google Scholar 

  • Klimont, Z., Cofala, J., Schopp, W., Amann, M., Streets, D. G., Ichikawa, Y., et al. (2001). Projections of SO2, NOx, NH3 and VOC emissions in East Asia up to 2030. Water, Air, and Soil Pollution, 130, 193–198.

    Article  Google Scholar 

  • Kulshrestha, U. C., Sarkar, A. K., Srivastava, S. S., & Parashar, D. C. (1995). A study on short-time sampling of individual rain events at New Delhi during monsoon, 1994. Water, Air, and Soil Pollution, 85, 2143–2148.

    Article  CAS  Google Scholar 

  • Kulshrestha, U. C., Sarkar, A. K., Srivastava, S. S., & Parashar, D. C. (1996). Investigation into atmospheric deposition through precipitation studies at New Delhi (India). Atmospheric Environment, 30(24), 4149–4154.

    Article  CAS  Google Scholar 

  • Kulshrestha, U. C., Kulshrestha, M. J., Sekhar, R., Sastry, G. S. R., & Vairamani, M. (2003). Chemical characteristics of rainwater at an urban site of south-central India. Atmospheric Environment, 37(1), 3019–3026.

    Article  CAS  Google Scholar 

  • Kuylenstierna, J. C. I., Camberidge, H., Cinderby, S., & Chadwick, M. J. (1995). Terrestrial ecosystem sensitivity to acidic deposition in developing countries. Water, Air, and Soil Pollution, 85, 2319–2324.

    Article  CAS  Google Scholar 

  • Kuylenstierna, J. C. I., Hicks, W. K., Cinderby, S., Vallack, H. W., & Engardt, M. (2001). Variability in mapping acidification risk scenarios for terrestrial ecosystems in Asian countries. Water, Air, and Soil Pollution, 130, 1175–1180.

    Article  Google Scholar 

  • Langan, S. J., Sverdrup, H. U., & Coull, M. (1995). The calculation of base cation release from the chemical weathering of Scottish soils using the profile model. Water, Air, and Soil Pollution, 85, 2497–2502.

    Article  CAS  Google Scholar 

  • Lovett, G. M., & Lindberg, S. E. (1993). Atmospheric deposition and canopy interactions of nitrogen in forests. Canadian Journal of Forest Research, 23, 1603–1616.

    Article  CAS  Google Scholar 

  • Malhi, Y., Wood, D., Baker, T. R., Wright, J., Phillips, O. L., Cochrane, T., et al. (2006). The regional variation of aboveground live biomass in old-growth Amazonian forests. Global Change Biology, 12, 1107–1138.

    Article  Google Scholar 

  • McNulty, S. G., Cohen, E. C., Myers, J. A. M., Sullivan, T. J., & Li, H. (2007). Estimates of critical acid loads and exceedances for forest soils across the conterminous United States. Environmental Pollution, 149, 281–292.

    Article  CAS  Google Scholar 

  • Meiwes, K. J., Khanna, P. K., & Ulrich, B. (1986). Parameters for describing soil acidification and their relevance to the stability of forest ecosystems. Forest Ecology and Management, 15, 161–179.

    Article  CAS  Google Scholar 

  • Milindalekha, J., Bhaskin, V. N., & Towprayoon, S. (2001). Calculation and mapping of sulphur critical loads for terrestrial ecosystems of Thailand. Water, Air, and Soil Pollution, 130, 1265–1270.

    Article  Google Scholar 

  • Miroslav, J. (2009). Acidic deposition emanating from the South African highveld - a critical levels and critical loads assessment. Ph.D. Department of Geography, Environmental Management & Energy Studies, University of Johannesburg.

  • Moore, D. M., & Reynolds, R. C. (1997). X-ray diffraction and identification and analysis of clay minerals (2nd ed.). New York: Oxford University Press.

    Google Scholar 

  • Morecroft, M. D., Sellers, F. K., & Lee, J. A. (1994). An experimental investigation into the effects of atmospheric nitrogen deposition on tow semi-natural grasslands. Journal of Ecology, 87, 475–483.

    Google Scholar 

  • Naik, M. S., Momin, G. A., Rao, P. S. P., Safai, P. D., & Ali, K. (2002). Chemical composition of rainwater around an industrial region in Mumbai. Current Science, 82(9), 1131–1137.

    CAS  Google Scholar 

  • Nakata, T. (1972). Geomorphic history and crustal movements of the Himalayas. Sendai: Institute of Geography, Tohuku University.

    Google Scholar 

  • Nihlgard, B. (1985). The ammonium hypothesis, an additional explanation to the forest dieback in Europe. Ambio, 14(1), 2–8.

    Google Scholar 

  • Nilsson, J., & Grennfelt, P. (1988). Critical loads for sulphur and nitrogen. Miljörapport: 15. Copenhagen: Nordic Council of Ministers.

    Google Scholar 

  • Nossin, J. J. (1971). Outline of the geomorphology of the Doon valley, Northern India U.P, India. Zeitschrift fuÉr Geomorphologie, NF (Supplementary Bulletin), 12, 19–50.

    Google Scholar 

  • Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., et al. (2007). An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmospheric Chemistry and Physics, 7, 4419–4444.

    Article  CAS  Google Scholar 

  • Olsson, M., & Melkerud, P. A. (1990). Determination of weathering rates based on geochemical properties of the soil. In: E. Pulkinene (Ed.), Proceedings of the Conference on Environmental Geochemistry in Northern Europe, Geological Survey of Finland, Symposium Series no. 34 (pp. 45–61).

  • Ouimet, R., Duchesne, L., Houle, D., & Arp, P. A. (2001). Critical loads and exceedances of acid deposition and associated forest growth in the Northern hardwood and boreal coniferous forests in Quebec, Canada. Water, Air, & Soil Pollution: Focus, 1, 119–134.

    CAS  Google Scholar 

  • Park, S., & Bashkin, V. (2001). Sulphur loading in South Korean ecosystems. Water, Air, and Soil Pollution, 132, 19–41.

    Article  CAS  Google Scholar 

  • Park, C. J., Noh, H. R., Kim, B. G., Kim, S. Y., Jung, I. U., Cho, C. R., et al. (2001). Evaluation of acid deposition in Korea. Water, Air, and Soil Pollution, 130, 445–450.

    Article  Google Scholar 

  • Posch, M., de Smat, P. A. M., & Hettelingh, J. P. (1999). Calculation and mapping of critical threshold in Europe, C.C.E Reports 1999, Report No. 259101009. Bilthoven, The Netherlands: National Institute of Public Health and the environment (RIVM).

  • Posch, M., Hettelingh, J. P., Slootweg, J., & Downing, R. J. (2003). Modelling and Mapping of Critical Thresholds in Europe: CCE Status Report 2003. Working Group on Effects of the Convention on Long-range Transboundary Air Pollution. RIVM Report no. 259101013/2003. Bilthoven, The Netherlands: National Institute of Public Health and the Environment (RIVM).

  • Puri, G. S. (1950). Soil pH and forest communities in the Sal (Shorea robusta) forests of the Dehradun valley, U.P., India. Industria Forestal, 76(7), 292–303.

    Google Scholar 

  • Rana, B. S., Singh, S. P., & Singh, R. P. (1989). Biomass and net primary productivity in Central Himalayan forests along an altitudinal gradient. Forest Ecology and Management, 27, 199–218.

    Article  Google Scholar 

  • Ravichandran, C., & Padmanabhamurty, B. (1994). Acid precipitation in Delhi, India. Atmospheric Environment, 28(14), 2291–2297.

    Article  CAS  Google Scholar 

  • Reddy, S. M., & Venkataraman, C. (2002a). Inventory of aerosol and sulphur dioxide emissions from India: Part I—Fossil fuel combustion. Atmospheric Environment, 36, 677–697.

    Article  CAS  Google Scholar 

  • Reddy, S. M., & Venkataraman, C. (2002b). Inventory of aerosol and sulphur dioxide emissions from India: Part II—Biomass combustion. Atmospheric Environment, 36, 699–712.

    Article  CAS  Google Scholar 

  • Reiners, W. A., & Olson, R. K. (1984). Effects of canopy components on throughfall chemistry: An experimental analysis. Oecologia, 63, 320–330.

    Article  Google Scholar 

  • Riley, J. P., & Chester, R. (1971). Introduction to marine chemistry. London: Academic.

    Google Scholar 

  • Robin, L. E., & Bazilevich, N. P. (1967). Production and mineral cycling in terrestrial vegetation (Engl. transl. G.E. Fogg). Edinburgh: Oliver and Boyd.

    Google Scholar 

  • Rodhe, H., & Herrera, R. (1998). Acidification in tropical countries. Chichester: Wiley.

    Google Scholar 

  • Rodhe, H., Galloway, J., & Dianwu, Z. (1992). Acidification in Southeast Asia-Prospect for the coming decades. Ambio, 21(2), 148–149.

    Google Scholar 

  • Saatchi, S. S., Houghton, R. A., Dos Santos Alvalá, R. C., Soares, J. V., & Yu, Y. (2007). Distribution of aboveground live biomass in the Amazon basin. Global Change Biology, 13, 816–837.

    Article  Google Scholar 

  • SACEP. (2004). Technical Documents for Wet and Dry Deposition Monitoring. Malé Declaration on Control and Prevention of Air Pollution and its Likely Transboundary Effects for South Asia: South Asia Cooperative Environment Program (SACEP) with UNEP and SEI.

  • Satsangi, G. S., Lakhani, A., Khare, P., Singh, S. P., Kumari, K. M., & Srivastava, S. S. (1998). Composition of rain water at a semi-arid rural site in India. Atmospheric Environment, 32(21), 3783–3793.

    Article  CAS  Google Scholar 

  • Satsangi, G. S., Lawrence, A. J., Lakhani, A., & Taneja, A. (2003). Assessment of the potential for soil acidification on North India using the critical load approach and locally derived data for acidic and basic inputs. Chemosphere, 53, 1011–1021.

    Article  CAS  Google Scholar 

  • Saxena, A., Kulshrestha, U. C., Kumar, N., Kumari, K. M., & Srivastava, S. S. (1996). Characterization of precipitation at Agra. Atmospheric Environment, 30(20), 3405–3412.

    Article  CAS  Google Scholar 

  • Schulze, M. G., Diehl, T., Brasseur, G. P., & Zittel, W. (2003). Air pollution and climate forcing impacts of a global hydrogen economy. Science, 302, 624–627.

    Article  CAS  Google Scholar 

  • Semenov, M., Bashkin, V., & Sverdrup, H. (2001). Critical loads of acidity for forest ecosystems of North Asia. Water, Air, and Soil Pollution, 130(1–4), 1193–1198.

    Article  Google Scholar 

  • Shah, J., Nagpal, T., Johnson, T., Amann, M., Carmichael, G., Foell, W., et al. (2000). Integrated analysis for acid rain in ASIA: Policy implication & results of Rains Asia. Annual Review of Energy and the Environment, 25, 339–375.

    Article  Google Scholar 

  • Shah, J. J., Nagpal, T., Johnson, T., Li, J., & Peng, C. (2001). RAINS- Asia application to China: Policy implications for sulphur control. Water, Air, and Soil Pollution, 130, 235–243.

    Article  Google Scholar 

  • Simon, K. S., Simon, M. A., & Benfield, E. F. (2009). Variation in ecosystem function in Appalachian streams along an acidity gradient. Ecological Applications, 19(5), 1147–1160.

    Article  CAS  Google Scholar 

  • Singh, J. S., & Singh, S. P. (1992). Forest of Himalaya, structure, functioning and impact of man. India: Gyanodaya Prakashan.

    Google Scholar 

  • Streets, D. G., Tsai, N. Y., Akimoto, H., & Oka, K. (2001). Trends in emissions of acidifying species in Asia. Water, Air, and Soil Pollution, 130, 187–192.

    Article  Google Scholar 

  • Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., Fu, Q., He, D., et al. (2003a). An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. Journal of Geophysical Research, 108, 8809.

    Article  CAS  Google Scholar 

  • Streets, D. G., Yarber, K. F., Woo, J. H., & Carmichael, G. R. (2003b). Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles, 17, 1099–1021.

    Article  CAS  Google Scholar 

  • Subbiah, B. V., & Asiza, G. L. (1956). A new method of determining available nitrogen in soil. Current Science, 25, 259–260.

    CAS  Google Scholar 

  • Summer, M. E., & Nobel, A. D. (2003). Soil acidification: The world story. In Z. Rengel (Ed.), Handbook of soil acidity (pp. 1–28). New York: Markel Dekker Inc.

    Google Scholar 

  • Sverdrup, H., & De Vries, W. (1994). Calculating critical loads for acidity with the simple mass balance method. Water, Air, and Soil Pollution, 72, 143–162.

    Article  CAS  Google Scholar 

  • Sverdrup, H., De Vries, W., & Henriksen, A. (1990). Mapping critcal loads, a guidance to the criteria calculation, data collection and mapping of critical loads. Nord 1990–98 (Miljörapport) Environment Report 14. Copenhagen: Nordic Council of Ministers.

    Google Scholar 

  • Thakur, V. C., & Pandey, A. K. (2004). Late Quaternary tectonic evolution of Doon in fault bend/propagated fold system, Garhwal Sub-Himalaya. Current Science, 87(11), 1567–1576.

    CAS  Google Scholar 

  • Tienhoven, A. M., Olbrich, K. A., Skoroszewski, R., Taljaard, J., & Zunckel, M. (1995). Application of critical loads approach in South Africa. Water, Air, and Soil Pollution, 85, 2577–2582.

    Article  Google Scholar 

  • UBA. (1996). Manual on methodologies and criteria for mapping critical levels/loads and geographical area where they are exceeded. Berlin: UBA.

    Google Scholar 

  • UBA. (2003). Manual on methodologies and criteria for mapping critical levels/loads and geographical area where they are exceeded. Update of Annexes Annex III, Cirtical Levels for Ozone. Berlin: UBA.

  • Ulrich, B. (1991). Soil acidification and alkalization. In B. Ulrich & M. E. Sumner (Eds.), Soil acidity (pp. 28–79). New York: Springer.

    Google Scholar 

  • van Aardenne, J. A., Carmichael, G. R., Levy, H., Streets, D., & Hordijk, L. (1999). Anthropogenic NOx emissions in Asia in the period 1990–2020. Atmospheric Environment, 33, 633–646.

    Article  Google Scholar 

  • Van Stempvert, D. R., & Wills, J. J. (1995). Aboveground vegetation effects on the deposition and cycling of atmospheric sulphur: Chemical and stable isotope evidence. Water, Air, and Soil Pollution, 60, 55–62.

    Article  Google Scholar 

  • von Uexküll, H. R., & Mutert, E. (1995). Global extent, development and economic impact of acid soils. Plant and Soil, 171, 1–15.

    Article  Google Scholar 

  • Williams, M. W., & Tonnessen, K. A. (2000). Critical loads for inorganic nitrogen deposition in the Colorado Front Range, USA. Ecological Applications, 10(6), 1648–1665.

    Article  Google Scholar 

  • Xie, S., Hao, J., Zhou, Z., Qi, L., & Yin, H. (1995). Assessment of critical loads in Liuzhou, china using static and dynamic models. Water, Air, and Soil Pollution, 85, 2401–2406.

    Article  CAS  Google Scholar 

  • Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., et al. (2009). Asian emissions in 2006 for the NASA INTEX-B mission. Atmospheric Chemistry and Physics, 9, 5131–5153.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank the Council of Scientific and Industrial Research (CSIR), New Delhi, India, for financially supporting the study and Forest Research Institute, Dehradun, India, for providing the logistic support. We cannot remain without thanking Mr. Sushil Kamboj, Mr. Rajendeer Kumar Maurya, and Mr. Arun Kandwal for their unconditional support in field work and data collection. The authors are also thankful to the Dr. J.P. Hettelingh, Head, Coordination Center for Effects (CCE), Bilthoven, for offering help for computing critical load polygon. Authors extend their thanks to the anonymous reviewer and Mr. Nishant whose inputs were indispensable in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Kumar Gautam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gautam, M.K., Tripathi, A.K. & Manhas, R.K. Assessment of Critical Loads in Tropical Sal (Shorea robusta Gaertn. F.) Forests of Doon Valley Himalayas, India. Water Air Soil Pollut 218, 235–264 (2011). https://doi.org/10.1007/s11270-010-0638-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0638-z

Keywords

Navigation