Skip to main content
Log in

Simplified Fixed Bed Design Models for the Adsorption of Acid Dyes on Novel Pine Cone Derived Activated Carbon

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A novel activated carbon has been prepared by the activation of ground pine cones using phosphoric acid activation, and the nitrogen Brunauer–Emmett–Teller surface area was 869 m2 g−1. Equilibrium isotherms were performed to assess the capacity of the activated carbon using two acidic dyes, namely Acid Blue 113 and Acid Black 1. The monolayer equilibrium isotherm capacities of Acid Blue 113 and Acid Black 1 were 286 and 458 mg dye/g C, respectively. These capacities are significantly higher than commercial carbons and other literature carbons. For the first time, these carbons were tested in fixed bed experimental systems and data analysed using the bed depth service time model (BDST) and the carbon usage rate (CUR) model. In the fixed bed studies, the key parameters for a 20-cm bed depth for the BDST model at 50% breakthrough capacity are (a) for Acid Black, the BDST capacity is 149 mg dye/g carbon and operating time is 1,530 min and (b) for Acid Blue, the breakthrough capacity is 9 mg of dye/g of carbon and operating time is 195 min. The fixed bed study indicates that the BDST design models can be applied satisfactorily, and the pine cone carbon has significant potential but a more mesoporous pine cone carbon is preferable for the larger Acid Black dye. The CUR design method was not successful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ali, M., & Sreekrishnan, T. R. (2001). Aquatic toxicity from pulp and paper mill effluents—a review. Advances in Environment Research, 5, 175–196.

    Article  CAS  Google Scholar 

  • Allegre, C., Moulin, P., Maisseu, M., & Charbit, F. (2006). Treatment and reuse of reactive dyeing effluents. Journal of Membrane Science, 269, 15–34.

    Article  CAS  Google Scholar 

  • Annadurai, G., Juang, R. S., & Lee, D. J. (2002). Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. Journal of Hazardous Materials, B92, 263–274.

    Article  Google Scholar 

  • ASTM. (1999). D4607-94—standard test method for determination of iodine number of activated carbon. In ASTM (Ed.), Annual book of ASTM standards (D4607-94). Philadelphia: ASTM.

    Google Scholar 

  • Aygun, A., Yenisoy-Karakas, S., & Duman, I. (2003). Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous and Mesoporous Materials, 66, 189–195.

    Article  CAS  Google Scholar 

  • Banat, I. M., Nigam, P., Singh, D., & Marchant, R. (1996). Microbial decolorization of textile-dye-containing effluents: A review. Bioresource Technology, 58, 217–227.

    Article  CAS  Google Scholar 

  • Banat, F., Al-Asheh, S., & Al-Makhadmeh, L. (2003). Evaluation of the use of raw and activated date pits as potential adsorbents for dye containing waters. Process Biochemistry, 39, 193–202.

    Article  CAS  Google Scholar 

  • Benefield, L. D., Judkins, J. F., & Weand, B. L. (1982). Process chemistry for water and wastewater treatment. New Jersey: Prentice Hall.

    Google Scholar 

  • Bohart, G. S., & Adams, E. Q. (1920). Some aspects of the behavior of charcoal with respect to chlorine. Journal of the American Chemical Society, 42, 523–544.

    Article  CAS  Google Scholar 

  • Carliell, C. M., Barclay, S. J., Shaw, C., Wheatley, A. D., & Buckley, C. A. (1998). The effect of salts used in textile dyeing on microbial decolourisation of a reactive azo dye. Environmental Technology, 19(11), 1133–1137.

    Article  CAS  Google Scholar 

  • Choy, K. K. H., McKay, G., & Porter, J. F. (1999). Sorption of acid dyes from effluents using activated carbons. Resources, Conservation and Recycling, 27, 57–71.

    Article  Google Scholar 

  • Chung, K. T., & Cerniglia, C. E. (1992). Mutagenicity of azo dyes: Structure–activity relationships. Mutation Research, Reviews in Mutation Research, 277, 201–220.

    CAS  Google Scholar 

  • Clarke, E. A., & Anliker, R. (1980). Handbook of environmental chemistry anthropogenic compounds. New York: Springer.

    Google Scholar 

  • Faria, P. C. C., Orfao, J. J. M., & Pereira, M. F. R. (2004). Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Research, 38, 2043–2052.

    Article  CAS  Google Scholar 

  • Girgis, B. S., & Ishak, M. F. (1999). Activated carbon from cotton stalks by impregnation with phosphoric acid. Material Letters, 39, 107–114.

    Article  CAS  Google Scholar 

  • Gottlieb, A., Shaw, C., Smith, C., Wheatle, A., & Forsyth, S. (2003). Toxicity of textile reactive azo dyes after hydrolysis and decolorisation. Journal of Biotechnology, 101, 49–56.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (2003). Sorption of dyes and copper ions onto biosorbents. Process Biochemistry, 38, 1047–1061.

    Article  CAS  Google Scholar 

  • Hutchins, R. A. (1973a). Optimum sizing of activated carbon systems. Industrial Water Engineering, 10(3), 40–43.

    CAS  Google Scholar 

  • Hutchins, R. A. (1973b). New simplified design of activated carbon systems. American Journal of Chemical Engineering, 80(9), 133–138.

    CAS  Google Scholar 

  • Jagtoyen, M., & Derbyshire, F. (1998). Activated carbons from yellow polar and white oak by phosphoric acid activation. Carbon, 36, 1085–1097.

    Article  CAS  Google Scholar 

  • Jain, A. K., Gupta, V. K., & Bhatnagar, A. (2003). Utilization of industrial waste products as adsorbents for the removal of dyes. Journal of Hazardous Materials, 101, 31–42.

    Article  CAS  Google Scholar 

  • Johns, M. M., Marshall, W. E., & Toles, C. A. (1999). The effect of activation method on the properties of pecan shell-activated carbons. Journal of Chemical Technology and Biotechnology, 74, 1037–1044.

    Article  CAS  Google Scholar 

  • Kadirvelu, K., Kavipriya, M., Karthika, C., Radhika, M., Vennilamani, N., & Pattabhi, S. (2003). Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions. Bioresources Technology, 87(1), 87–129.

    Article  Google Scholar 

  • Ko, D. C. K., Porter, J. F., & McKay, G. (2000). Optimised correlations for the fixed bed adsorption of metal ions on bone char. Chemical Engineering Science, 55, 5819–5829.

    Article  CAS  Google Scholar 

  • Koplin, D. W., Furlong, E. T., & Meyer, M. T. (2000). Pharmaceuticals, hormones and other organic wastewater contaminants in US streams. Environmental Science & Technology, 36(6), 1202–1211.

    Google Scholar 

  • Koumanova, B., Achova, B., & Allen, S. J. (2003). Biosorption of acid dye on kudzu (Pueraria lobataohwi) from aqueous solutions. Journal of University of Chemical Technology & Metallurgy, 38, 735–746.

    CAS  Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica, and platinum. Journal of the American Chemical Society, 40, 1361–1403.

    Article  CAS  Google Scholar 

  • Lee, V. K. C., Porter, J. F., & McKay, G. (2001). Modified design model for the adsorption of dye onto peat food and bioproducts processing. Transactions of the Institution of Chemical Engineers—Part C, 79(1), 21–26.

    CAS  Google Scholar 

  • Mathur, N., Bhavnagar, P., Nagar, P., & Bijarnia, P. K. (2005). Mutagenicity assessment of effluents from textile/dye industries of Sanganer, Jaipur (India): A case study. Ecotoxicology and Environmental Safety, 61(1), 105–113.

    Article  CAS  Google Scholar 

  • McKay, G., Blair, H. S., & Gardner, J. R. (1984). The adsorption of dyes onto chitin in fixed bed columns and batch adsorbers. Journal of Applied Polymer Science, 29, 1499–1514.

    Article  CAS  Google Scholar 

  • Mishra, G., & Tripathy, M. (1993). A critical review of the treatment for decolorization of textile effluent. Colourage, 40, 35–38.

    CAS  Google Scholar 

  • Molina-Sabio, M., Rodriguez-Reinoso, F., Caturla, F., & Selles, M. J. (1995). Porosity in granular carbons activated with phosphoric acid. Carbon, 33(8), 1105–1113.

    Article  CAS  Google Scholar 

  • Munoz, Y., Arriagada, R., Soto, G., & Garcia, R. (2003). Phosphoric and boric acid as activated agent in pine sawdust. Journal of Chemical Technology and Biotechnology, 78, 1252–1259.

    Article  CAS  Google Scholar 

  • Munoz-Gonzalez, Y., Arriagada-Acuna, R., Soto-Garrido, G., & Garcia-Lovera, R. (2009). Activated carbons from peach stones and pine sawdust by phosphoric activation used in clarification and decolorisation processes. Journal of Chemical Technology and Biotechnology, 84, 39–47.

    Article  CAS  Google Scholar 

  • Namasivayam, C., & Kavitha, D. (2002). Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes and Pigments, 54, 47–58.

    Article  CAS  Google Scholar 

  • Noszko, L., Bota, A., Simay, A., & Nagy, L. (1984). Preparation of activated carbon from the by-products of agricultural industry. Periodica Polytechnica Chemical Engineering, 28, 293–297.

    CAS  Google Scholar 

  • Rajeshwarisivaraj, S. S., Senthilkumar, P., & Subburam, V. (2001). Carbon from Cassava peel, an agricultural waste, as an adsorbent in the removal of dyes and metal ions from aqueous solution. Bioresources Technology, 80, 233–235.

    Article  CAS  Google Scholar 

  • Rajgopalan, S. (1995). Water pollution problem in the textile industry and control. In R. K. Trivedi (Ed.), Pollution management in industries (pp. 21–44). Karad: Environmental.

    Google Scholar 

  • Robinson, T., MucMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77, 247–255.

    Article  CAS  Google Scholar 

  • Routh, T. (1998). Anaerobic treatment of vegetable tannery wastewater by UASB process. Indian Journal of Environmental Protection, 20(2), 115–123.

    Google Scholar 

  • Sepulveda, L., Fernandez, K., Contreras, E., & Palma, C. (2004). Adsorption of dyes using peat: Equilibrium and kinetic studies. Environmental Technology, 52, 987–996.

    Article  Google Scholar 

  • Snoeyink, V. L. (1990). Water quality and treatment. New York: McGraw-Hill.

    Google Scholar 

  • Sostar-Turk, S., Petrinic, I., & Simonic, M. (2005). Laundry wastewater treatment using coagulation and membrane filtration. Resources, Conservation and Recycling, 44(2), 185–196.

    Article  Google Scholar 

  • Toles, C. A., Marshall, W. E., Johns, M. M., Wartelle, L. H., & McAloon, A. (2000). Acid-activated carbons from almond shells: Physical, chemical and adsorptive properties and estimated cost of production. Bioresources Technology, 71, 87–92.

    Article  CAS  Google Scholar 

  • Tseng, R. L., Wu, F. C., & Juang, R. S. (2003). Liquid-phase adsorption of dyes and phenols using pinewood-based activated carbons. Carbon, 41, 487–495.

    Article  CAS  Google Scholar 

  • Valix, M., Cheung, W. H., & McKay, G. (2004). Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption. Chemosphere, 56, 493–501.

    Article  CAS  Google Scholar 

  • Walker, G. M., & Weatherley, L. R. (1997). Adsorption of acid dyes on to granular activated carbon in fixed beds. Water Research, 31(8), 2093–2101.

    Article  CAS  Google Scholar 

  • Wu, F. C., Tseng, R. L., & Juang, R. S. (1999). Preparation of activated carbons from bamboo and their adsorption abilities for dyes and phenol. Journal of Environmental Science & Health—Part A, 34, 753–1775.

    Google Scholar 

  • Yilmaz, O., Cem Kantarli, I., Yuksel, M., Saglam, M., & Yanik, J. (2007). Conversion of leather wastes to useful products. Resources, Conservation and Recycling, 49(4), 436–448.

    Article  Google Scholar 

  • Zhang, Q., & Chuang, T. K. (2001). Adsorption of organic pollutants of Kraft Pulp mill on activated carbon and polymer resin. Advances in Environmental Research, 3, 251–258.

    Article  Google Scholar 

  • Zollinger, H. (2003). Color chemistry: Syntheses, properties, and applications of organic dyes and pigments. Zurich: Helvetica Chimica Acta.

    Google Scholar 

Download references

Acknowledgements

The authors thank the Hamadan University of Medical Sciences for the financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon McKay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadi, M., Samarghandi, M.R. & McKay, G. Simplified Fixed Bed Design Models for the Adsorption of Acid Dyes on Novel Pine Cone Derived Activated Carbon. Water Air Soil Pollut 218, 197–212 (2011). https://doi.org/10.1007/s11270-010-0635-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0635-2

Keywords

Navigation