Skip to main content

Advertisement

Log in

Land Use and Basin Characteristics Determine the Composition and Abundance of the Microzooplankton

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The influence of watershed land use on microzooplankton was examined. Six rivers and a shallow lake located in rural (agriculture, livestock) and urban areas were sampled during 4 weeks at low water, low temperatures and 3 weeks at high water, high temperatures. The major aim of this study was to analyze the composition, richness and abundance of the microzooplankton in relation to land use, taking into account nutrient concentration, biological oxygen demand (BOD5), conductivity, pH, transparency, dissolved oxygen, and chlorophyll-a. Redundancy analysis was used to assess microzooplankton response to environmental gradients. The composition and abundance can be considered good indicators of the land used and characteristic of the basin (broad range of conductivity water). The species composition show a gradient along the conductivity, pH and chlorophyll-a. Brachionus spp. were associated with saline waters on rural area and Keratella spp. (except Keratella tropica) were associated with urban water bodies. The microzooplankton abundance diminished by a factor of ten from the rivers in livestock–agriculture-dominated watersheds to those located in strictly urban areas. Urban rivers had low abundances of chlorophyll-a and microzooplankton despite the high concentration of nutrients. However, the effect of urbanization (mesotrophic/mesosaprobious state and lead presence) cannot be analyzed alone due to the potential effect of a filter-feeding invasive mollusk that colonizes the hard surfaces of harbor buildings and bridge pillars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allan, J. D., & Flecker, A. S. (1993). Biodiversity conservation in running waters. Bioscience, 43, 31–43.

    Article  Google Scholar 

  • Amsler, M., Drago, E., & Paira, A. (2007). Fluvial sediments: main channel and floodplain interrelationships. In M. Iriondo, J. C. Paggi, & J. Parma (Eds.), The Middle Paraná River: limnology of subtropical wetland (pp. 123–141). Berlin: Springer.

    Google Scholar 

  • Antoniolli, M. E. (2007). Calidad bacteriológica de los hidrosistemas naturales que circundan la ciudad de Santa Fe, Argentina. Tesina licenciatura saneamiento ambiental. Santa Fe: UNL.

    Google Scholar 

  • APHA. (2005). Standard methods for the examination of water and wastewater. Washington: American Public Health Association.

    Google Scholar 

  • Attayde, J. L., & Bozelli, R. L. (1998). Assesing the indicator properties of zooplankton assemblages to disturbance gradients by canonical correspondence analysis. Canadian Journal of Fisheries and Aquatic Sciences, 55, 1789–1797.

    Article  Google Scholar 

  • Baer, K. E., & Pringle, C. M. (2000). Special problems of urban river conservation: the encroaching megalopis. In P. J. Boon, B. R. Davis, & G. E. Potts (Eds.), Global perspectives on river conservation. London: John Wiley Sons.

    Google Scholar 

  • Beaver, J. R., & Crisman, T. L. (1990). Use the microzooplankton as an early indicator of adevancing cultural eutrophication. Internationale Vereinigung für Theoretische und Angewandte Limnologie, 24, 532–537.

    Google Scholar 

  • Boltovskoy, D., & Cataldo, D. H. (1999). Population of Limnoperna fortunei, an invasive fouling mollusc, in the Lower Paraná River. Biofouling, 13(3), 255–263.

    Article  Google Scholar 

  • Bonetto, A. A. (1976). Calidad de las aguas del río Paraná. Buenos Aires: INCYTH-PNUD.

    Google Scholar 

  • Camargo, J. A., & Alonso, A. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environment International, 32, 831–849.

    Article  CAS  Google Scholar 

  • Ciros-Perez, J., Gomez, A., & Serra, M. (2001). On the taxonomy of three sympatric sibling species of the Brachionus plicatilis (Rotifera) complex from Spain, with the description of B. ibericus n. sp. Journal of Plankton Research, 23, 1311–1328.

    Article  Google Scholar 

  • Claps, M. C., Gabellone, N., & Neschuk, N. C. (2009). Influence of regional factors on zooplankton structure in a saline lowland river: the Salado River (Buenos Aires Province, Argentina). River Research and Applications, 25, 453–471.

    Article  Google Scholar 

  • Derry, A. M., Prepas, E. E., & Hebert, P. D. N. (2003). A comparison of zooplankton communities in saline lakewater with variable anion composition. Hydrobiologia, 505, 199–215.

    Article  Google Scholar 

  • Dodson, S. I., & Lillie, R. A. (2001). Zooplankton communities of restored depressional wetlands in Wisconsin, USA. Wetlands, 21, 292–300.

    Article  Google Scholar 

  • Dodson, S. I., Lillie, R. A., & Will-Wolf, S. (2005). Land use, water chemistry, aquatic vegetation, and zooplankton community structure of shallow lakes. Ecological Applications, 15, 1191–1198.

    Article  Google Scholar 

  • Dodson, S. L. (2008). Biodiversity in southern Wisconsin storm-water retention ponds: correlations with watershed cover and productivity. Lake and Reservoir Management, 24, 370–380.

    Article  Google Scholar 

  • Dodson, S. L., Everhart, W. R., Jandl, A. K., & Krauskopf, S. J. (2007). Effects of watershed land use and lake age on zooplankton species richness. Hydrobiologia, 579, 393–399.

    Article  Google Scholar 

  • Duggan, I. C., Green, J. D., & Thomasson, K. (2001). Do rotifers have potential as bioindicators of lake trophic state? Internationale Vereinigung für Theoretische und Angewandte Limnologie, 27, 3497–3502.

    Google Scholar 

  • Duggan, I. C., Green, J. D., & Shiel, R. J. (2001). Distribution of rotifers in North Island, New Zealand, and their potential use as bioindicators of lake trophic state. Hydrobiologia, 446(447), 155–164.

    Article  Google Scholar 

  • Duggan, I. C., Green, J. D., & Shiel, R. J. (2002). Distribution of rotifer assemblages and historical factors. Freshwater Biology, 47, 195–206.

    Article  Google Scholar 

  • Ejsmont-Karabin, J., & Kruk, M. (1998). Effects of contrasting land use on free-swimming rotifer communities of streams in Masurian Lake District, Poland. Hydrobiologia, 387(388), 241–249.

    Article  Google Scholar 

  • Faeth, S. H., Warren, P. S., Schochat, E., & Marussich, W. A. (2005). Trophic dynamics in urban communities. Bioscience, 55, 399–407.

    Article  Google Scholar 

  • Fontaneto, D., De Smet, W. H., & Ricci, C. (2006). Rotifers in saltwater environments, re-evaluation of an inconspicuous taxon. Journal of the Marine Biological Association (United Kingdom), 86, 623–656.

    Article  Google Scholar 

  • Gagneten, A. M., & Paggi, J. C. (2008). Effects of heavy metal contamination (Cr, Cu, Pb, Cd) and eutrophication on zooplankton in the lower basin of the Salado River (Argentina). Water, Air, and Soil Pollution, 198, 317–334.

    Article  Google Scholar 

  • Gannon, J. E., & Stemberg, R. S. (1978). Zooplankton (especially crustaceans and rotifers) as indicators of water quality. Transactions of the American Microscopical Society, 97, 16–35.

    Article  Google Scholar 

  • Garcia de Emiliani, M. O., & Anselmi de Manavella, M. I. (1989). Fitoplancton y variables ambientales en la cuenca del río Saladillo (Santa Fe, Argentina). Revista Brasileira de Biologia, 49, 957–967.

    Google Scholar 

  • Gray, L. (2004). Changes in water quality and macroinvertebrates communities resulting from urban stormflows in the Provo River, Utah, USA. Hydrobiologia, 518, 33–46.

    Article  CAS  Google Scholar 

  • Hammer, Ø., Harper, D.A.T., Ryan, P.D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9. Available at: http://palaeo-electronica.org/20011/past/issue1_01.htm. Accessed 24 April 2009.

  • Hoffmann, M. D., & Dodson, S. I. (2005). Land use, primary productivity, and lake area as descriptors of zooplankton diversity. Ecology, 86, 255–261.

    Article  Google Scholar 

  • Jaccard, P. (1942). The distribution of flora inthe alpine zone. New Phyology, 11, 37–50.

    Article  Google Scholar 

  • Jeppesen, E., Jensen, J. P., Jensen, C., Faageng, B., Hessen, D. O., Sondergaard, M., et al. (2003). The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: a study of 466 lakes from the temperate zone to the artic. Ecosystem, 6, 313–325.

    Article  CAS  Google Scholar 

  • José de Paggi, S. B. (1981). Variaciones temporales y distribución horizontal del zooplancton en algunos cauces secundarios del río Paraná Medio. Studies on Neotropical Fauna and Environment, 16, 185–199.

    Article  Google Scholar 

  • José de Paggi, S. B., & Paggi, J. C. (1998). Zooplancton de ambientes acuaticos con diferentes estados troficos y salinidad. Neotropica, 44, 95–106.

    Google Scholar 

  • José de Paggi, S. B., & Paggi, J. C. (2007). Zooplankton. In M. Iriondo, J. C. Paggi, & J. Parma (Eds.), The Middle Paraná River: limnology of subtropical wetland (pp. 229–245). Berlin: Springer-Verlag.

    Google Scholar 

  • Kameswara Rao, R., & Chandra Mohan, P. (1977). Rotifers as indicators of pollution. Current Science, 46, 190.

    Google Scholar 

  • Knoll, L. B., Vanni, M. J., & Renwick, W. H. (2003). Phytoplankton primary production and photosynthetic parameters in reservoirs along a gradient of watershed land use. Limnology and Oceanography, 48(2), 608–617.

    Article  Google Scholar 

  • Koste, W. (1978). Rotatoria. Die Rädertiere Mitteleuropas. Berlin: Gebrüder Borntraeger.

    Google Scholar 

  • Langley, J. M., Kett, S., Al-Khalili, R. S., & Humphrey, C. J. (1995). The conservation value of English urban pond in terms of their rotifer fauna. Hydrobiologia, 313(314), 259–266.

    Article  Google Scholar 

  • Lougheed, V., & Chow-Fraser, P. (2002). Development and use of a zooplankton index of wetland qualilty in the Laurentian Great Lakes basin. Ecological Applications, 12, 474–486.

    Article  Google Scholar 

  • Mallat, E., & Barceló, D. (1998). Analysis and degradation study of glyphosate and of aminomethylphosphonic acid in natural waters by means of polymeric and ion-exchange solid-phase extraction columns followed by ion chromatography-post-column derivatization with fluorescence detection. Journal of Chromatography, 823, 129–136.

    Article  CAS  Google Scholar 

  • Margalef, R. (1974). Ecología. Barcelona: Omega.

    Google Scholar 

  • Margalef, R. (1983). Limnología. Barcelona: Omega.

    Google Scholar 

  • McQueen, D. J., Johannes, M. R. S., Post, J. R., Steward, T. J., & Lean, D. R. S. (1989). Bottom-up and top-down impacts on freshwater pelagic community structure. Ecological Monographs, 59, 289–310.

    Article  Google Scholar 

  • McQueen, D. J., Post, J. R., & Mills, E. L. (1986). Trophic relationships in freshwater pelagic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 43, 1571–1581.

    Article  Google Scholar 

  • McKinney, M. L. (2002). Urbanization, biodiversity, and conservation. Bioscience, 52, 883–890.

    Article  Google Scholar 

  • Moore, A., & Palmer, M. (2005). Invertebrate biodiversity in agricultural and urban headwater streams: implications for conservation and management. Ecological Applications, 15, 1169–1177.

    Article  Google Scholar 

  • Morgan, R. P., & Cushman, S. F. (2005). Urbanization effects on stream fish assemblages in Maryland, USA. Journal of the North American Benthological Society, 24, 643–655.

    Google Scholar 

  • Morton, B. (1997). The aquatic nuisance species problem: a global perspective and review. In F. M. D’Itri (Ed.), En Zebra mussels and aquatic nuisance species (pp. 1–53). Chelsea: Ann Arbor.

    Google Scholar 

  • Ohl, C., Krauze, K., & Grünbühel, C. (2007). Towards an understanding of long-term ecosystem dynamics by merging socio-economic and environmental research criteria for long-term socio-ecological research sites selection. Ecological Economics, 63, 383–391.

    Article  Google Scholar 

  • Olguin, H. F., Puig, A., Loez, C. R., Salibian, A., Topalián, M. L., Castañe, P. M., et al. (2004). An integration of water physicochemistry, algal bioassays, phytoplankton, and zooplankton for ecotoxicological assessment in a highly polluted lowland river. Water, Air, and Soil Pollution, 155, 355–381.

    Article  CAS  Google Scholar 

  • Paturej, E. (2006). Assessment of the trophic state of the coastal lake Gardno based on community structure and zooplankton-related indices. Electronic Journal of Polish Agricultural Universities, 9, 1–17.

    Google Scholar 

  • Paul, M. J., & Meyer, J. L. (2001). Streams in the Urban Landscape. Annual Review of Ecology and Systematics, 32, 333–365.

    Article  Google Scholar 

  • Pecorari, S., José de Paggi, S. B., & Paggi, J. C. (2006). Assesment of the urbanization effect on a lake by zooplankton. Water Resources, 33, 677–685.

    Article  CAS  Google Scholar 

  • Rojas Molina, F., Paggi, J. C., & Devercelli, M. (2009). Zooplanktophagy in the natural diet and selectivity of the invasive mollusk Limnoperna fortunei. Biological Invasions. doi:10.1007/s10530-009-9578-1.

    Google Scholar 

  • Segers, H. (1995). The Lecanidae (Monogononta). In T. Nogrady (Ed.), Rotifera 2 (Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, Vol. 6, pp. 1–226). The Hague, The Netherlands: SPB Academic Publishing.

    Google Scholar 

  • Schriver, P., Bøgestrand, J., Jeppesen, E., & Søndergaard, M. (1995). Impact of Submerged Macrophytes on Fish-zooplankton-phytoplankton Interactions: large-scale enclosure experiments in a Shallow Eutrophic Lake. Freshwater Biology, 33, 255–270.

    Article  Google Scholar 

  • Schulz, R., & Liess, M. (1999). A field study of the effects of agriculturally derived insecticide input on stream macroinvertebrate dynamics. Aquatic Toxicology, 46, 155–176.

    Article  CAS  Google Scholar 

  • Shannon, C. E., & Weaver, W. (1964). The mathematical theory of communication. Urbana: University of Illinois.

    Google Scholar 

  • Smith, R. F., & Lamp, W. O. (2008). Comparison of insect communities between adjacent headwater and main-stem streams in urban and rural watersheds. Journal of the North American Benthological Society, 27, 161–175.

    Article  Google Scholar 

  • Sylvester, F., Dorado, J., Boltovskoy, D., Juárez, A., & Cataldo, A. (2004). Filtration rates of the invasive peste bivalve Limnoperna fortunei as a function of size and temperature. Hydrobiologia, 534, 71–80.

    Article  Google Scholar 

  • Taylor, S. L., Roberts, S. C., Walsh, C. J., & Hatt, B. E. (2004). Catchment urbanization and increased benthic algal biomass instreams: linking mechanisms to management. Freshwater Biology, 49, 835–851.

    Article  CAS  Google Scholar 

  • Ter Braak, C. J. F., & Smilauer, P. (2002). CANOCO software for canonical community ordination (vers. 4.5.). Ithaca, New York: Microcomputer Power.

    Google Scholar 

  • Urrea, G., & Sabater, S. (2009). Epilithic diatom assemblages and their relationship to environmental characteristics in an agricultural watershed (Guadiana River, SW Spain). Ecological Indicators, 3, 693–703.

    Article  Google Scholar 

  • Utz, R. M., Hilderbrand, R. H., & Boward, D. M. (2009). Identifying regional differences in threshold responses of aquatic invertebrates to land cover gradients. Ecological Indicators, 9, 556–567.

    Article  Google Scholar 

  • Vollenweider R. A. (1968). Scientific fundamentals of the eutrophication of lakes and flowing water, with particular reference to nitrogen and phosphorus as factors in eutrophication. Organisation for Economic Cooperation and Development, Technical Report DC5/SC1/68.27. p. 250.

  • Walsh, C. J., Roy, A. H., Feminella, J. W., Cottingham, M., Groffman, P. M., & Morgan, R. P. (2005). The urban stream syndrome: current knowledge and the search for a cure. The North American Benthological Society, 24, 706–723.

    Google Scholar 

  • Whitman, R. L., Nevers, M. B., Goodrich, M. L., Murphy, P. C., & Davis, B. M. (2004). Characterizaction of Lake Michigan coast lakes using zooplankton assemblages. Ecological Indicators, 4, 277–286.

    Article  CAS  Google Scholar 

  • Zar, J. H. (1996). Biostatistical analysis. New Jersey: Prentice Hall.

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from ANPCyT and UNL, (PICTO 01–13232) and by the Universidad Nacional del Litoral (CAI + D 6–44). We would like to thank the following people who assisted in different stages of this study: Dr. P. Collins, Tec. C. Debonis, Lic. E. Peruchet, Lic. E. Houret and Dr. M. Leira (Universidad de la Coruña, España). Thank you also to Midrul Thomas (Michigan State University, USA) for improving the English of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana B. José de Paggi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

José de Paggi, S.B., Devercelli, M. Land Use and Basin Characteristics Determine the Composition and Abundance of the Microzooplankton. Water Air Soil Pollut 218, 93–108 (2011). https://doi.org/10.1007/s11270-010-0626-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0626-3

Keywords

Navigation