Skip to main content
Log in

Effects of Exogenous Glycinebetaine and Trehalose on Cadmium Accumulation and Biological Responses of an Aquatic Plant (Lemna gibba L.)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study aimed to investigate and compare the effects of exogenous glycinebetaine (GB) and trehalose (TR) on the biological responses of duckweed (Lemna gibba L.) against cadmium (Cd) accumulation. Duckweed samples were exposed to 0.5, 1, and 3 mM of Cd for 6 days in the presence and absence of GB (0.5, 1, 2, and 5 mM) or TR (0.5, 1, 2, and 5 mM). The accumulation of Cd, GB, and TR were investigated, and their influence on the rates of lipid peroxidation, photosynthetic activity, proline content and enzymatic antioxidant performance was examined. Two-way ANOVA showed that exposure to Cd and/or GB or TR caused an increase in Cd accumulation concentration dependently. TR had significant effects on Cd accumulation. The application of 0.5 mM TR increased Cd accumulation, whereas 5 mM decreased Cd accumulation. However, Cd accumulation was not significantly affected by the presence of GB. Cd concentration alone or in combination with GB or TR had a significant effect on lipid peroxidation, photosynthetic activity, proline content, and antioxidant enzyme activities. In addition, statistically significant GB–Cd and TR–Cd interactions were observed. We conclude that both GB and TR play protective roles against Cd stress in aquatic plants. The use of a low level of TR (i.e., 0.5 mM) may be more useful than GB in phytoremediation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aravind, P., & Prasad, M. N. V. (2003). Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.: a free floating freshwater macrophyte. Plant Physiology and Biochemistry, 41, 391–397.

    Article  CAS  Google Scholar 

  • Arnon, D. I. (1949). Copper enzyme in isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiology, 24, 1–15.

    Article  CAS  Google Scholar 

  • Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206–216.

    Article  CAS  Google Scholar 

  • Bae, H., Herman, E., & Sicher, R. (2005). Exogenous trehalose promotes non-structural carbohydrate accumulation and induces chemical detoxification and stress response proteins in Arabidopsis thaliana grown in liquid culture. Plant Science, 168, 1293–1301.

    Article  CAS  Google Scholar 

  • Banu, M. N. A., Hoque, M. A., Watanabe-Sugimoto, M., Matsuoka, K., Nakamura, Y., & Shimoishi, Y. (2009). Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. Journal of Plant Physiology, 166, 146–156.

    Article  CAS  Google Scholar 

  • Bates, L. S. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  • Cakmak, I. (2000). Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. The New Phytologist, 146, 185–205.

    Article  CAS  Google Scholar 

  • Cannino, G., Ferruggia, E., Luparello, C., & Rinaldi, A. M. (2009). Cadmium and mitochondria. Mitochondrion, 9, 377–384.

    Article  CAS  Google Scholar 

  • Cao, X., Ma, L. Q., & Tu, C. (2004). Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.). Environmental Pollution, 128, 317–325.

    Article  CAS  Google Scholar 

  • Cardwell, A. J., Hawker, D. W., & Greenway, M. (2002). Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere, 48, 653–663.

    Article  CAS  Google Scholar 

  • Chen, Y. X., He, Y. F., Luo, Y. M., Yu, Y. L., Lin, Q., & Wong, M. H. (2003). Physiological mechanism of plant roots exposed to cadmium. Chemosphere, 50, 789–793.

    Article  CAS  Google Scholar 

  • Cortina, C., & Culianez-Macia, F. A. (2005). Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Science, 169, 75–82.

    Article  CAS  Google Scholar 

  • Davis, P. H. (1984). Flora of Turkey and East Aegean Islands vol. 8. Edinburg: Edinburgh University Press.

    Google Scholar 

  • Demiral, T., & Turkan, I. (2004). Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? Journal of Plant Physiology, 161, 1089–1100.

    Article  CAS  Google Scholar 

  • Demiral, T., & Turkan, I. (2006). Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stres. Environmental and Experimental Botany, 56, 72–79.

    Article  CAS  Google Scholar 

  • Dixit, V., Pandey, V., & Shyam, R. (2001). Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv.Azad). Journal of Experimental Botany, 52, 1101–1109.

    Article  CAS  Google Scholar 

  • Duman, F., Leblebici, Z., & Aksoy, A. (2009). Growth and bioaccumulation characteristics of watercress (Nasturtium officinale R. Br.) exposed to cadmium, cobalt and chromium. Chemical Speciation and Bioavailability, 21, 257–265.

    Article  CAS  Google Scholar 

  • Gancedo, C., & Flores, C. L. (2004). The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Research, 4, 351–359.

    Article  CAS  Google Scholar 

  • Grannopolitis, N., & Ries, K. (1977). SOD occurence in higher plants. Plant Physiology, 59, 309–314.

    Article  Google Scholar 

  • Haas, J. W. (1986). Complexation of calcium and copper with carbohydrates: implications for seawater speciation. Marine Chemistry, 19, 299–304.

    Article  CAS  Google Scholar 

  • Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53, 1–11.

    Article  CAS  Google Scholar 

  • Harinasut, P., Tsutsui, K., Takabe, T., Nomura, M., Takabe, T., & Kishitani, S. (1996). Exogenous glycinebetaine accumulation and increased salt-tolerance in rice seedlings. Bioscience, Biotechnology, and Biochemistry, 60, 366–368.

    Article  CAS  Google Scholar 

  • Hattori, T., Mitsuya, S., Fujiwara, T., Jagendorf, A. T., & Takabe, T. (2009). Tissue specificity of glycinebetaine synthesis in barley. Plant Science, 176, 112–118.

    Article  CAS  Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.

    Article  CAS  Google Scholar 

  • Heuer, B. (2003). Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants. Plant Science, 165, 693–699.

    Article  CAS  Google Scholar 

  • Hoque, M. A., Okuma, E., Banu, M. N. A., Nakamura, Y., Shimoishi, Y., & Murata, Y. (2007). Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. Journal of Plant Physiology, 164, 553–561.

    Article  CAS  Google Scholar 

  • Hoque, M. A., Banu, M. N. A., Nakamura, Y., Shimoishi, Y., & Murata, Y. (2008). Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. Journal of Plant Physiology, 165, 813–824.

    Article  CAS  Google Scholar 

  • Islam, M. M., Hoque, M. A., Okuma, E., Banu, M. N. A., Shimoishi, Y., Nakamura, Y., et al. (2009). Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. Journal of Plant Physiology, 166, 1587–1597.

    Article  CAS  Google Scholar 

  • Islam, M. M., Hoque, M. A., Okuma, E., Jannat, R., Banu, M. N. A., Jahan, S., et al. (2009). Proline and glycinebetaine confer cadmium tolerance on tobacco bright yellow-2 cells by increasing ascorbate-glutathione cycle enzyme activities. Bioscience, Biotechnology, and Biochemistry, 73, 2320–2323.

    Article  CAS  Google Scholar 

  • Khan, I., Ahmad, A., & Iqbal, M. (2009). Modulation of antioxidant defence system for arsenic detoxification in Indian mustard. Ecotoxicology and Environmental Safety, 72, 626–634.

    Article  CAS  Google Scholar 

  • Li, B. Q., Zhou, Z. W., & Tian, S. P. (2008a). Combined effects of endo- and exogenous trehalose on stress tolerance and biocontrol efficacy of two antagonistic yeasts. Biological Control, 46, 187–193.

    Article  CAS  Google Scholar 

  • Li, M., Zhang, L. J., Tao, L., & Li, W. (2008b). Ecophysiological responses of Jussiaea rapens to cadmium exposure. Aquatic Botany, 88, 347–352.

    Article  CAS  Google Scholar 

  • Liang, Y. C., Chen, Q., Liu, Q., Zhang, W. H., & Ding, R. X. (2003). Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Journal of Plant Physiology, 160, 1157–1164.

    Article  CAS  Google Scholar 

  • Luo, Y., Li, W. M., & Wang, W. (2008). Trehalose: protector of antioxidant enzymes or reactive oxygen species scavenger under heat stress? Environmental and Experimental Botany, 63, 378–384.

    Article  CAS  Google Scholar 

  • Ma, Q. Q., Wang, W., Li, Y. H., Li, D. Q., & Zou, Q. (2006). Alleviation of photoinhibition in drought stressed wheat (Triticum aestivum) by foliar applied glycinebetaine. Journal of Plant Physiology, 163, 165–175.

    Article  CAS  Google Scholar 

  • MacKinney, G. (1941). Absorption of light by chlorophyll solutions. The Journal of Biological Chemistry, 140, 315–322.

    CAS  Google Scholar 

  • Mäkelä, P., Jokinen, K., Kontturi, M., Peltonen-Sainio, P., Pehu, E., & Somersalo, S. (1998). Foliar application of glycinebetaine a novel product from sugar beet as an approach to increase tomato yield. Indian Crop Production, 7, 139–148.

    Article  Google Scholar 

  • Megateli, S., Semsari, S., & Couderchet, M. (2009). Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba. Ecotoxicology and Environmental Safety, 72, 1774–1780.

    Article  CAS  Google Scholar 

  • Mishra, S., Srivastava, S., Tripathi, R. D., Govindarajan, R., Kuriakose, S. V., & Prasad, M. N. V. (2006). Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiology and Biochemistry, 44, 25–37.

    Article  CAS  Google Scholar 

  • Mohan, B. S., & Hosetti, B. B. (1997). Potential phytotoxicity of lead and cadmium to Lemna minor grown in sewage stabilization ponds. Environmental Pollution, 98, 233–238.

    Article  CAS  Google Scholar 

  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant & Cell Physiology, 22, 867–880.

    CAS  Google Scholar 

  • Nery, D. C. M., da Silva, C. G., Mariani, D., Fernandes, P. N., Marcos Pereira, D., Panek, A. D., et al. (2008). The role of trehalose and its transporter in protection against reactive oxygen species. Biochimica et Biophysica Acta, 1780, 1408–1411.

    CAS  Google Scholar 

  • Ngayila, N., Botineau, M., Baudu, M., & Basly, J. P. (2009). Myriophyllum alterniflorum DC. Effect of low concentrations of copper and cadmium on somatic and photosynthetic endpoints: a chemometric approach. Ecological Indicators, 9, 307–312.

    Article  CAS  Google Scholar 

  • Ozden, M., Demirel, U., & Kahraman, A. (2009). Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Scientia Horticulturae, 119, 163–168.

    Article  CAS  Google Scholar 

  • Prasad, M. N. V. (1995). Cadmium toxicity and tolerance in vascular plants. Environmental and Experimental Botany, 35, 525–545.

    Article  CAS  Google Scholar 

  • Prasad, M. N. V., Malec, P., Waloszek, A., Bojko, M., & Strzaka, K. (2001). Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Science, 161, 881–889.

    Article  CAS  Google Scholar 

  • Razinger, J., Dermastia, M., Koce, J. D., & Zrimec, A. (2008). Oxidative stress in duckweed (Lemna minor L.) caused by short-term cadmium exposure. Environmental Pollution, 153, 687–694.

    Article  CAS  Google Scholar 

  • Rodriguez, M., Taleisnik, E., Lenardon, S., & Lascano, R. (2010). Are Sunflower chlorotic mottle virus infection symptoms modulated by early increases in leaf sugar concentration? Journal of Plant Physiology, 167, 1137–1144.

    Article  CAS  Google Scholar 

  • Sasmaz, A., & Obek, E. (2009). The accumulation of arsenic, uranium, and boron in Lemna gibba L. exposed to secondary effluents. Ecological Engineering, 35, 1564–1567.

    Article  Google Scholar 

  • Singer, M. A., & Lindquist, S. (1998). Multiple effects of trehalose on protein folding in vitro and in vivo. Molecular Cell, 1, 639–648.

    Article  CAS  Google Scholar 

  • Singh, N., Ma, L. Q., Srivastava, M., & Rathinasabapathi, B. (2006). Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. Plant Science, 170, 274–282.

    Article  CAS  Google Scholar 

  • Siripornadulsil, S., Traina, S., Verma, D. P. S., & Sayre, R. T. (2002). Molecular mechanisms of proline mediated tolerance to toxic heavy metals in transgenic microalgae. The Plant Cell, 14, 2837–2847.

    Article  CAS  Google Scholar 

  • Sivaci, E. R., Sivaci, A., & Sökmen, M. (2004). Biosorption of cadmium by Myriophyllum spicatum L. and Myriophyllum triphyllum orchard. Chemosphere, 56, 1043–1048.

    Article  Google Scholar 

  • Tomassi, F. (2001). A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds. Journal of Experimental Botany, 52, 1647–1654.

    Article  Google Scholar 

  • Zhang, F. Q., Wang, Y. S., Lou, Z. P., & Dong, J. D. (2007). Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere, 67, 44–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are deeply grateful for the technical assistance of Fatih Dogan Koca and Musa Kar. This study was supported by Erciyes University Scientific Research Project Fund (FBA 07-32).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Duman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duman, F., Aksoy, A., Aydin, Z. et al. Effects of Exogenous Glycinebetaine and Trehalose on Cadmium Accumulation and Biological Responses of an Aquatic Plant (Lemna gibba L.). Water Air Soil Pollut 217, 545–556 (2011). https://doi.org/10.1007/s11270-010-0608-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0608-5

Keywords

Navigation