Skip to main content
Log in

Nitrogen and Phosphorus Storage in Contrasting Reaches of a Sub-tropical River System

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study investigated the storage of nitrogen (N) and phosphorus (P) in the biomass, bed sediments and water column of representative reaches of a sub-tropical river, the upper Brisbane River (UBR), Queensland, Australia, and contrasted instream storage with total wet season exports. In reaches which contained accumulated fine sediments, more than 87% of total P and between 50% and 92% of total N were stored in the surface sediments. The lower proportion of N in sediment at some sites was attributed to substantial differences in the N/P ratios of sediments and macrophytes. At one site, the riverbed was dominated by cobbles and boulders and total nutrient stocks were comparatively low and dominated by the biomass. In reaches with a narrow channel and intact riparian cover, biomass N and P were stored predominately in leaf litter, while in wider unshaded reaches, macrophytes dominated. Total instream storage in the mid to lower reaches of the UBR was ∼50.9 T for N and ∼18.1 T for P. This was considerably higher than total wet season N (∼15.6 T) and P (∼2.7 T) exports from the UBR. The first flow event in the river after a prolonged period of no flow resulted in the export of free-floating, emergent species Azolla. The estimated biomass of Azolla in the mid to lower reaches of the river was equivalent to approximately 24% and 9% of the total N and P flux, indicating that this may be a significant, previously unaccounted for, source at peak flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander, R. B., Smith, R. A., Schwarz, G. E., Boyer, E. W., Nolan, J. V., & Brakebill, J. W. (2008). Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River basin. Environmental Science & Technology, 42, 822–830.

    Article  CAS  Google Scholar 

  • APHA. (2005). Standard methods for the examination of water and waste water. Washington: American Public Health Association, American Water Works Association, Water Environment Federation.

    Google Scholar 

  • Arbuckle, K. E., & Downing, J. A. (2001). The influence of watershed land use on lake N:P in a predominantly agricultural landscape. Limnology and Oceanography, 46, 970–975.

    Article  Google Scholar 

  • Cooper, D. M., & Watts, C. D. (2002). A comparison of river load estimation techniques: Application to dissolved organic carbon. Environmetrics, 13, 733–750.

    Article  CAS  Google Scholar 

  • Davis, R. J., & Koop, K. (2006). Eutrophication in Australian rivers, reservoirs and estuaries—A southern hemisphere perspective on the science and its implications. Hydrobiologia, 559, 23–76.

    Article  CAS  Google Scholar 

  • den Heyer, C., & Kalff, J. (1998). Organic matter mineralization rates in sediments: A within- and among-lake study. Limnology and Oceanography, 43, 695–705.

    Article  Google Scholar 

  • Diaz, O. A., Daroub, S. H., Stuck, J. D., Clark, M. W., Lang, T. A., & Reddy, K. R. (2006). Sediment inventory and phosphorus fractions for water conservation area canals in the Everglades. Soil Science Society of America Journal, 70, 863–871.

    Article  CAS  Google Scholar 

  • Dodds, W. K., Lopez, A. J., Bowden, W. B., Gregory, S., Grimm, N. B., Hamilton, S. K., et al. (2002). N uptake as a function of concentration in streams. Journal of the North American Benthological Society, 21, 206–220.

    Article  Google Scholar 

  • Findlay, S., Smith, P. J., & Meyer, J. L. (1986). Effect of detritus addition on metabolism of river sediment. Hydrobiologia, 137, 257–263.

    Article  CAS  Google Scholar 

  • Fitzpatrick, F. A., Waite, I. R., D’Arconte, P. J., Meador, M. R., Maupin, M. A., & Gurtz, M. E. (1998). Revised methods for characterizing stream habitat in the national water-quality assessment program. US Geological Survey Water-Resources Investigations Report. Raleigh: US Geological Survey.

    Google Scholar 

  • Golladay, S. W., Webster, J. R., Benfield, E. F., & Swank, W. T. (1992). Changes in stream stability following forest clearing as indicated by storm nutrient budgets. Archiv für Hydrobiologie, 90, 1–33.

    Google Scholar 

  • Gordon, N. D., McMahon, T. A., & Finlayson, B. L. (1992). Stream hydrology: An introduction for ecologists. Chichester: Wiley.

    Google Scholar 

  • Greenway, M., & Woolley, A. (1999). Constructed wetlands in Queensland: Performance efficiency and nutrient bioaccumulation. Ecological Engineering, 12, 39–55.

    Article  Google Scholar 

  • Hall, R. O. J., Bernhardt, E. S., & Likens, G. E. (2002). Relating nutrient uptake with transient storage in forested mountain streams. Limnology and Oceanography, 47, 255–265.

    Article  CAS  Google Scholar 

  • Hamilton, S. K., & Gehrke, P. C. (2005). Australia’s tropical river systems: Current scientific understanding and critical knowledge gaps for sustainable management. Marine and Freshwater Research, 56, 243–252.

    Article  Google Scholar 

  • Hamilton, S. K., Tank, J. L., Raikow, D. F., Wollheim, W. M., Peterson, B. J., & Webster, J. R. (2001). Nitrogen uptake and transformation in a Midwestern U.S stream: A stable isotope enrichment study. Biogeochemistry, 54, 297–340.

    Article  CAS  Google Scholar 

  • Heathwaite, L., Sharpley, A., & Gburek, W. (2000). A conceptual approach for integrating phosphorus and nitrogen management at watershed scales. Journal of Environmental Quality, 29, 158–166.

    Article  CAS  Google Scholar 

  • Hosomi, M., & Sudo, R. (1986). Simultaneous determination of total nitrogen and total phosphorus in freshwater samples using persulfate digestion. International Journal of Environmental Studies, 27, 267–275.

    Article  CAS  Google Scholar 

  • Houston, W. A., & Duivenvoorden, L. J. (2002). Replacement of littoral native vegetation with the ponded pasture grass Hymenachne amplexicaulis: Effects on plant, macroinvertebrate and fish biodiversity of backwaters in the Fitzroy River, Central Queensland, Australia. Marine and Freshwater Research, 53, 1235–1244.

    Article  Google Scholar 

  • Kennard, M., Pusey, B., Olden, J., Mackay, S., Stein, J., & Marsh, N. (2009). Classification of natural flow regimes in Australia to support environmental flow management. Freshwater Biology, 55, 171–193.

    Article  Google Scholar 

  • Kerr, J. G., Burford, M., Olley, J., & Udy, J. (2010). Phosphorus sorption in soils and sediments: implications for phosphate supply to a subtropical river in southeast Queensland, Australia. Biogeochemistry. doi:10.1007/s10533-010-9422-9.

    Google Scholar 

  • LACHAT. (1996). Total phosphorus in Kjeldahl digests QuikChem method 13-115-01-1-B. Milwaukee: Lachat Instruments.

    Google Scholar 

  • Mainstone, C. P., & Parr, W. (2002). Phosphorus in rivers—Ecology and management. The Science of the Total Environment, 282–283, 25–47.

    Article  Google Scholar 

  • McClain, M. E., Bilby, R. E., & Triska, F. J. (1998). Chapter 14: Nutrient cycling and responses to disturbance. In R. Naimen & R. Bilby (Eds.), River ecology and management: Lessons from the Pacific coastal ecoregion (pp. 347–372). New York: Springer.

    Google Scholar 

  • Merriam, J. L., McDowell, W. H., Tank, J. L., Wollheim, W. M., Crenshaw, C. L., & Johnson, S. L. (2002). Characterizing nitrogen dynamics, retention and transport in a tropical rainforest stream using an in situ 15 N addition. Freshwater Biology, 47, 143–160.

    Article  CAS  Google Scholar 

  • Meyer, J. L., & Likens, G. E. (1979). Transport and transformation of phosphorus in a forest stream ecosystem. Ecology, 60, 1255–1269.

    Article  CAS  Google Scholar 

  • Mulholland, P. J., Newbold, J. D., Elwood, J. W., Ferren, L. A., & Webster, J. R. (1985). Phosphorus spiralling in a woodland stream: Seasonal variations. Ecology, 66, 1012–1023.

    Article  Google Scholar 

  • Mulholland, P. J., Tank, J. L., Sanzone, D. M., Wollheim, W. M., Peterson, B. J., Webster, J. R., et al. (2000). Nitrogen cycling in a forest stream determined by a 15 N tracer addition. Ecological Monographs, 70, 471–493.

    Google Scholar 

  • Newbold, J. D. (1996). Cycles and spirals of nutrients. In P. Calow & G. E. Petts (Eds.), River flows and channel forms. Oxford: Blackwell.

    Google Scholar 

  • Newbold, J. D., Elwood, J. W., O’Neill, R. V., & Sheldon, A. L. (1983). Phosphorus dynamics in a woodland stream ecosystem: A study of nutrient spiralling. Ecology, 64, 1249–1265.

    Article  CAS  Google Scholar 

  • Newbold, J. D., Elwood, J. W., Schulze, M. S., Stark, R. W., & Barmeier, J. C. (1983). Continuous ammonium enrichment of a woodland stream: Uptake kinetics, leaf decompositions, and nitrification. Freshwater Biology, 13, 193–204.

    Article  CAS  Google Scholar 

  • Noe, G. B., Childers, D. L., Edwards, A. L., Gaiser, E., Jayachandran, K., Lee, D., et al. (2002). Short-term changes in phosphorus storage in an oligotrophic Everglades wetland ecosystem receiving experimental nutrient enrichment. Biogeochemistry, 59, 239–267.

    Article  CAS  Google Scholar 

  • Parsons, M., Thoms, M., & Norris, R. (2002). Australian River Assessment System: AusRivAS Physical Assessment Protocol. Canberra: University of Canberra.

    Google Scholar 

  • Reddy, K. R., Flaig, E. G., & Graetz, D. A. (1996). Phosphorus storage capacity of uplands, wetlands and streams of the Lake Okeechobee Watershed, Florida. Agriculture, Ecosystems & Environment, 59, 203–216.

    Article  CAS  Google Scholar 

  • Reddy, K. R., Kadlec, R. H., Flaig, E., & Gale, P. M. (1999). Phosphorus retention in streams and wetlands: A review. Critical Reviews in Environmental Science and Technology, 29, 83–146.

    Article  CAS  Google Scholar 

  • Sabater, F., Butturini, A., Marti, E., Munoz, I., Romani, A., Wray, J., et al. (2000). Effects of riparian vegetation removal on nutrient retention in a Mediterranean stream. Journal of the North American Benthological Society, 19, 609–620.

    Article  Google Scholar 

  • Triska, F. J., Sedell, J. R., Cromack Junior, K., Gregory, S. V., & McCorison, F. M. (1984). Nitrogen budget for a small coniferous forest stream. Ecological Monographs, 1, 119–140.

    Article  Google Scholar 

  • Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130–137.

    Article  Google Scholar 

  • Vichkovitten, T., & Holmer, M. (2004). Contribution of plant carbohydrates to sedimentary carbon mineralization. Organic Geochemistry, 35, 1053–1066.

    Article  CAS  Google Scholar 

  • Vincent, W. J. (2001). Nutrient partitioning in the upper Canning River, Western Australia, and implications for the control of cyanobacterial blooms using salinity. Ecological Engineering, 16, 359–371.

    Article  Google Scholar 

  • Walters, D. M., Fritz, K. M., & Phillips, D. L. (2007). Reach-scale geomorphology affects organic matter and consumer δ13C in a forested Piedmont stream. Freshwater Biology, 52, 1105–1119.

    Article  CAS  Google Scholar 

  • Wetzel, R. G. (1999). Organic phosphorus mineralization in soils and sediments. In K. R. Reddy, G. A. O’Conner, & C. L. Schelske (Eds.), Phosphorus biogeochemistry in subtropical ecosystems (pp. 225–241). Boca Raton: Lewis.

    Google Scholar 

  • Wilcock, R. J., Scarsbrook, M. R., Costley, K. J., & Nagels, J. W. (2002). Controlled release experiments to determine the effects of shade and plants on nutrient retention in a lowland stream. Hydrobiologia, 485, 153–162.

    Article  CAS  Google Scholar 

  • Wood, P. J., & Armitage, P. D. (1997). Biological effects of fine sediment in the lotic environment. Environmental Management, 21, 203–217.

    Article  Google Scholar 

  • Young, W. J., Marston, F. M., & Davis, J. R. (1996). Nutrient exports and land use in Australian catchments. Journal of Environmental Management, 47, 165–183.

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank the Australian Research Council, the Southeast Queensland Healthy Waterways Partnership and the Seqwater for their financial support. We wish to thank Seqwater, the Queensland Department of Natural Resources and Water and the Southeast Queensland Healthy Waterways Partnership for providing important background data related to the project. We would also like to thank Rene Diocares and Scott Byrnes for their help in the laboratory and Queensland Health Scientific Services for analysing water column nutrients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Grainger Kerr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerr, J.G., Burford, M., Olley, J. et al. Nitrogen and Phosphorus Storage in Contrasting Reaches of a Sub-tropical River System. Water Air Soil Pollut 217, 523–534 (2011). https://doi.org/10.1007/s11270-010-0606-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0606-7

Keywords

Navigation