Skip to main content

Advertisement

Log in

Assessment of Heavy Metal Bioavailability in Contaminated Soils from a Former Mining Area (La Union, Spain) Using a Rhizospheric Test

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A rhizospheric biotest, consisting of a thin layer of substratum in close contact with roots of Lolium multiflorum, was used on two contrasting contaminated soils (Cabezo and Brunita) issued from a former mining area in La Union (Spain). On top of this biotest, soil characterisation, including CaCl2 selective extractions, was performed. Total heavy metal concentrations were the highest in the soil from Cabezo, but CaCl2 extractions indicated higher heavy metal mobilities in Brunita soil. On the base of heavy metal concentrations and biomass production in L. multiflorum seedlings, availability assessed by the rhizospheric biotest was higher than the values obtained from CaCl2 extraction, except for Mn and Pb. Rhizospheric biotest also revealed higher heavy metal bioavailability for Cabezo. The low pH of Brunita (3.47) could explain the high CaCl2-extractable heavy metal concentrations as well as the high transfer factor found for Cu, Mn and Zn in this substrate. Cu, Mn and Zn toxicities were also detected for shoot tissues. Transpiration rates were clearly lower for seedlings exposed to Brunita than for those exposed to Cabezo, while water use efficiency was higher for the former (4.8 mg DW ml−1) than for the latter (3.8 mg DW ml−1). Iron nutrition was found to interfere with heavy metal root absorption, mainly through negative interactions during root absorption. It is concluded that rhizospheric test offers the advantage to consider the root–soil interactions in a dynamic perspective and constitutes a useful tool for the assessment of heavy metal availability on contaminated soils. Heavy metal bioavailability assessment should not be based on only one measure alone, but on different and complementary approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alloway, B. J. (1990). Heavy metals in soils. New York: Wiley.

    Google Scholar 

  • Almås, A. R., Lombnæs, P., Sogn, T. A., & Mulder, J. (2006). Speciation of Cd and Zn in contaminated soils assessed by DGT-DIFS, and WHAM/Model VI in relation to uptake by spinach and ryegrass. Chemosphere, 62, 1647–1655.

    Article  Google Scholar 

  • Bermond, A. (1999). Caractérisation chimique de la spéciation des métaux traces dans les sols. In ECRIN (Ed.), Spéciation des métaux dans le sol (pp. 73–95). Paris: Les cahiers des clubs CRIN.

    Google Scholar 

  • Blackmore, L. C., Searle, P. L., & Daly, B. K. (1987). Methods for chemical analysis of soils. New Zealand soil Bureau Scientific, Report 80.

  • Cappuyns, V., Van Herreweghe, S., Swennen, R., Ottenburgs, R., & Deckers, J. (2002). Arsenic pollution at the industrial site of Reppel-Bocholt (north Belgium). The Science of the Total Environment, 295, 217–140.

    Article  CAS  Google Scholar 

  • Chaignon, V., & Hinsinger, P. (2003). A biotest for evaluating copper bioavailability to plants in a contaminated soil. Journal of Environmental Quality, 32, 824–833.

    Article  CAS  Google Scholar 

  • Chaney, R. L., Brown, S. L., Stuczynski, T. I., Daniels, W. L., Henry, C. L., Li, Y. M., et al. (1999). In-situ remediation and phytoextraction of metals from hazardous contaminated soils. In US Environmental Protection Agency (Ed.), US EPA Conference, Innovative clean-up approaches : investments in technology development, results and outlook for the future (pp. 1–29). Chicago.

  • Conesa, H. M., Faz, A., & Arnaldos, R. (2006). Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena–La Unión mining district (SE Spain). Science of the Total Environment, 366, 1–11.

    Article  CAS  Google Scholar 

  • Council of the European Communities. (1986). Council directive of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Official Journal of the European Communities, 181, 6–12.

    Google Scholar 

  • Degryse, F., Broos, K., Smolders, E., & Merckx, R. (2003). Soil solution concentration of Cd and Zn can be predicted with a CaCl2 soil extract. European Journal of Soil Science, 54, 149–157.

    Article  CAS  Google Scholar 

  • Deiana, S., Manunza, B., Palma, A., Premoli, A., & Gessa, C. (2001). Interactions and mobilization of metal ions at the soil–root interface. In G. R. Gobran, W. W. Wenzel, & E. Lombi (Eds.), Trace elements in the rhizosphere (pp. 127–148). Boca Raton: CRC.

    Google Scholar 

  • Du Laing, G., Vanthuyne, D. R. J., Vandecasteele, B., Tack, F. M. G., & Verloo, M. G. (2007). Influence of hydrological regime on pore water metal concentrations in a contaminated sediment-derived soil. Environmental Pollution, 147, 615–625.

    Article  Google Scholar 

  • Feix, I., & Tremel-Schaub, A. (2005). Contamination des sols—Transfert des sols vers les plantes. Paris: EDP Sciences.

    Google Scholar 

  • García, G., Zanuzzi, A., & Faz, A. (2005). Evaluation of heavy metal availability prior to an in situ soil phytoremediation program. Biodegradation, 16, 187–194.

    Article  Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of soils analysis. Part 1. Physical and Mineralogical Methods (2nd ed., pp. 383–411). Madison: American Society of Agronomy.

    Google Scholar 

  • Gleyzes, C., Tellier, S., & Astruc, M. (2002). Fractionation studies of trace elements in contaminated soils and sediments: A review of sequential extraction procedures. Trac-Trends in Analytical Chemistry, 21, 451–467.

    Article  CAS  Google Scholar 

  • Greger, M. (2003). Metal availability, uptake, transport and accumulation in plants. In M. N. V. Prasad (Ed.), Heavy metals stress in plants: From molecules to ecosystems (2nd ed., pp. 1–27). Berlin: Springer.

    Google Scholar 

  • Hinsinger, P. (2001). Bioavailability of trace elements as related to root-induced chemical changes in the rhizosphere. In G. R. Gobran, W. W. Wenzel, & E. Lombi (Eds.), Trace elements in the rhizosphere (pp. 25–41). Boca Raton: CRC.

    Google Scholar 

  • Houba, V. J. G., Lexmond, T. M., Novozamsky, I., & van der Lee, J. J. (1996). State of the art and future developments in soil analysis for bioavailability assessment. Science of the Total Environment, 178, 21–28.

    Article  CAS  Google Scholar 

  • Houba, V. J. G., Temminghoff, E. J. M., Gaikhorst, G. A., & van Vark, W. (2000). Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Communications in Soil Science and Plant Analysis, 31, 1299–1396.

    Article  CAS  Google Scholar 

  • Hund-Rinke, K., & Kördel, W. (2003). Underlying issues in bioaccessibility and bioavailability: Experimental methods. Ecotoxicology and Environmental Safety, 56, 52–62.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton: CRC.

    Google Scholar 

  • Klumpp, A., Ansel, W., Klumpp, G., Breuer, J., Vergne, P., Sanz, M. J., et al. (2009). Airborne trace element pollution in 11 European cities assessed by exposure of standardised ryegrass cultures. Atmospheric Environment, 43, 329–339.

    Article  CAS  Google Scholar 

  • Kruyts, N., Thiry, Y., & Delvaux, B. (2000). Respective horizon contributions to cesium-137 soil-to-plant transfer: A rhizospheric experimental approach. Journal of Environmental Quality, 29, 1180–1185.

    Article  CAS  Google Scholar 

  • Kruyts, N., Titeux, H., & Delvaux, B. (2004). Mobility of radiocesium in three distinct forest floors. Science of the Total Environment, 319, 241–252.

    Article  CAS  Google Scholar 

  • Lindsay, W. L. (1979). Chemical equilibria in soils. New York: Wiley-Interscience.

    Google Scholar 

  • Lombi, E., Wenzel, W. W., Gobran, G. R., & Adriano, D. C. (2001). Dependency of phytoavailability of metals on indigenous and induced rhizosphere processes: A review. In G. R. Gobran, W. W. Wenzel, & E. Lombi (Eds.), Trace elements in the rhizosphere (pp. 3–24). Boca Raton: CRC.

    Google Scholar 

  • Macnicol, R. D., & Beckett, P. H. T. (1985). Critical tissue concentration of potentially toxic elements. Plant and Soil, 85, 107–129.

    Article  CAS  Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed.). London: Academic.

    Google Scholar 

  • Marschner, H., & Römheld, V. (1994). Strategies of plants for acquisition of iron. Plant and Soil, 165, 261–274.

    Article  CAS  Google Scholar 

  • McGrath, S. P., Shen, Z. G., & Zhao, F. J. (1997). Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant and Soil, 188, 153–159.

    Article  CAS  Google Scholar 

  • McLaughlin, M. J., Zarcinas, B. A., Stevens, D. P., & Cook, N. (2000). Soil testing for heavy metals. Communications in Soil Science and Plant Analysis, 31(11–14), 1661–1700.

    Article  CAS  Google Scholar 

  • Meers, E., Ruttens, A., Geebelen, W., Vangronsveld, J., Samson, R., Vanbroekhoven, K., et al. (2005). Potential use of the plant antioxidant network for environmental exposure assessment of heavy metals in soils. Environmental Monitoring and Assessment, 120, 243–267.

    Article  Google Scholar 

  • Meers, E., Samson, R., Tack, F. M. G., Ruttens, A., Vandegehuchte, M., Vangronsveld, J., et al. (2007a). Phytoavailability assessment of heavy metals in soils by single extractions and accumulation by Phaseolus vulgaris. Environmental and Experimental Botany, 60, 385–396.

    Article  CAS  Google Scholar 

  • Meers, E., Du Laing, G., Unamuno, V., Ruttens, A., Vangronsveld, J., Tack, F. M. G., et al. (2007b). Comparison of cadmium extractability from soils by commonly used single extraction protocols. Geoderma, 141, 247–259.

    Article  CAS  Google Scholar 

  • Mehra, O. P., & Jackson, M. L. (1960). Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. In A. Swinefold (Ed.), Clays and Clay Minerals Proceedings 7th National Conference Washington DC (pp. 317–327). New York: Pergamon.

    Google Scholar 

  • Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Engineering Geology, 60, 193–207.

    Article  Google Scholar 

  • Niebes, J. F., Dufey, J. E., Jaillard, B., & Hinsinger, P. (1993). Release of nonexchangeable potassium from different size fractions of 2 highly K-fertilized soils in the rhizosphere of rape (Brassica napus cv Drakkar). Plant and Soil, 156, 403–406.

    Article  Google Scholar 

  • Page, A. L., Miller, R. H., & Keeney, D. R. (1982). Methods of soil analysis. Part 2—Chemical and microbiological properties (2nd ed.). Madison: American Society of Agronomy.

    Google Scholar 

  • Pichtel, J., & Bradway, D. J. (2008). Conventional crops and organic amendments for Pb, Cd and Zn treatment at a severely contaminated site. Bioresource Technology, 99, 1241–1251.

    Article  Google Scholar 

  • Poschenrieder, C., & Barceló, J. (2003). Water relations in heavy metal stressed plants. In M. N. V. Prasad (Ed.), Heavy metals stress in plants: From molecules to ecosystems (2nd ed., pp. 249–270). Berlin: Springer.

    Google Scholar 

  • Rieuwerts, J., Thornton, I., Farago, M., & Ashmore, M. (1998). Quantifying the influence of soil properties on the solubility of metals by predictive modelling of secondary data. Chemical Speciation and Bioavailability, 10, 83–94.

    Article  CAS  Google Scholar 

  • Robles-Arenas, V. M., Rodríguez, R., García, C., Manteca, J. I., & Candela, L. (2006). Sulphide-mining impacts in the physical environment: Sierra de Cartagena-La Unión (SE Spain) case study. Environmental Geology, 51, 47–64.

    Article  CAS  Google Scholar 

  • Römheld, V. (1991). The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: An ecological approach. Plant and Soil, 130, 127–134.

    Article  Google Scholar 

  • Römheld, V., & Awad, F. (2000). Significance of root exudates in acquisition of heavy metals from a contaminated calcareous soil by graminaceous species. Journal of Plant Nutrition, 23, 1857–1866.

    Article  Google Scholar 

  • Schuwirth, N., & Hofmann, T. (2006). Comparability of and alternatives to leaching tests for the assessment of the emission of inorganic soil contamination. Journal of Soils and Sediments, 6(2), 102–112.

    Article  CAS  Google Scholar 

  • Shenker, M., Fann, T. W.-M., & Crowley, D. E. (2001). Phytosiderophores influence on cadmium mobilization and uptake by wheat and barley plants. Journal of Environmental Quality, 30, 2091–2098.

    Article  CAS  Google Scholar 

  • U.S. Department of Agriculture, Natural Resources Conservation Service, (2007). National soil survey handbook, title 430-VI [online]. http://soils.usda.gov/technical/handbook/.

  • Vandecasteele, B., De Vos, B., & Tack, F. M. G. (2002). Cadmium and zinc uptake by volunteer willow species and elder rooting in polluted dredged sediment disposal sites. Science of the Total Environment, 299, 191–205.

    Article  CAS  Google Scholar 

  • Vassil, A. D., Kapulnik, Y., Raskin, I., & Salt, D. E. (1998). The role of EDTA in lead transport and accumulation by Indian Mustard. Plant Physiology, 117, 447–453.

    Article  CAS  Google Scholar 

  • Von Wirén, N., Marschner, H., & Römheld, V. (1996). Roots of iron-efficient maize also absorb phytosiderophore-chelated zinc. Plant Physiology, 111, 1119–1125.

    Google Scholar 

  • Walker, D. J., Clemente, R., & Bernal, M. P. (2004). Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere, 57, 215–224.

    Article  CAS  Google Scholar 

  • Weihermüller, L., Siemens, J., Deurer, M., Knoblauch, S., Rupp, H., Göttlein, A., et al. (2007). In situ soil water extraction: A review. Journal of Environmental Quality, 36, 1735–1748.

    Article  Google Scholar 

  • Wong, M. H. (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50, 775–780.

    Article  CAS  Google Scholar 

  • Wong, J. W. C., Ip, C. M., & Wong, M. H. (1998). Acid-forming capacity of lead–zinc mine tailings and its implications for mine rehabilitation. Environmental Geochemistry and Health, 20, 149–155.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Pr. André Lejeune of the Université catholique de Louvain for his helpful comments in the review of this manuscript and Mr. Patrick Populaire of the Université catholique de Louvain for his technical assistance regarding the biotest setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lambrechts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambrechts, T., Couder, E., Bernal, M.P. et al. Assessment of Heavy Metal Bioavailability in Contaminated Soils from a Former Mining Area (La Union, Spain) Using a Rhizospheric Test. Water Air Soil Pollut 217, 333–346 (2011). https://doi.org/10.1007/s11270-010-0591-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0591-x

Keywords

Navigation