Skip to main content
Log in

Cultivar-Specific Response of Soybean (Glycine max L.) to Ambient and Elevated Concentrations of Ozone Under Open Top Chambers

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Two cultivars of soybean (Pusa 9814 and Pusa 9712) were investigated to evaluate the impact of ambient and elevated concentrations of ozone (O3) in a suburban site of India with and without application of 400 ppm ethylenediurea (EDU) in open top chambers having filtered air (FCs), non-filtered air (NFCs), and non-filtered plus 20 ppb O3 (NFCs + 20 ppb). Significant reductions were observed in various growth parameters, biomass accumulation, and yield attributes of soybean cultivars due to ambient O3 in NFCs and elevated concentration of O3 in NFCs + 20 ppb. Reductions in all parameters were of lower magnitude in plants treated with EDU as compared to non-EDU treated plants. Yield (weight of seeds plant−1) increased by 29.8% and 33% in Pusa 9712 and by 28.2% and 29.0% in Pusa 9814 due to EDU treatment in plants grown at ambient and elevated levels of O3, respectively. The results clearly showed that (a) EDU can be effectively used to assess phytotoxicity of O3 by providing protection against its deleterious effects, (b) EDU can be used for biomonitoring of O3 in areas experiencing its higher concentrations, and (3) EDU is more effective against higher concentrations of O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agrawal, S. B., Singh, A., & Rathore, D. (2004). Assessing the effects of ambient air pollution on growth, biochemical and yield characteristics of three cultivars of wheat (Triticum aestivum L.) with ethylenediurea and ascorbic acid. Journal of Plant Biology, 31(3), 165–172.

    CAS  Google Scholar 

  • Agrawal, S. B., Singh, A., & Rathore, D. (2005). Role of ethylenediurea (EDU) in assessing impact of ozone on Vigna radiata L. plants in a suburban area of Allahabad (India). Chemosphere, 61, 218–228.

    Article  CAS  Google Scholar 

  • Al-Qurainy, F. H. (2008). Effect of air pollution and ethylenediurea on broad bean plants grown at two localities in KSA. International Journal of Botany, 4(1), 117–122.

    Article  CAS  Google Scholar 

  • Ball, G. R., Benton, J., Palmer-Brown, D., Fuhrer, J., Skarby, L., Gimeno, B. S., et al. (1998). Identifying factors which modify the effects of ambient ozone on white clover (Trifolium repens) in Europe. Environmental Pollution, 103, 7–16.

    Article  CAS  Google Scholar 

  • Bell, J. N. B., & Ashmore, M. R. (1986). Design and construction of open top chambers and methods of filtration (equipments and cost). In Proceedings of II European Open Top Chambers Workshop, September 1986, Freiburg. CEC, Brussels.

  • Biswas, D. K., Xu, H., Li, Y. G., Sun, J. Z., Wang, X. Z., Han, X. G., et al. (2008). Genotypic differences in leaf biochemical, physiological and growth responses to ozone in 20 winter wheat cultivars released over the past 60 years. Global Change Biology, 14, 46–59.

    Google Scholar 

  • Black, V. J., Black, C. R., Roberts, J. A., & Stewart, C. A. (2000). Impact of ozone on the reproductive development of plants. New Phytologist, 147, 421–447.

    Article  CAS  Google Scholar 

  • Brennan, E. G., Clarke, B. B., Greenhalgh-weidman, B., & Smith, G. (1990). An assessment of the impact of ambient ozone on field grown crops in New Jersey using the EDU method: Part 2—soybean (Glycine max L.) Merr.). Environmental Pollution, 66, 361–373.

    Article  CAS  Google Scholar 

  • Brunschon-Harti, S., Fangmeire, A., & Jager, H. J. (1995). Influence of ozone and ethylenediurea (EDU) on growth and yield of bean (Phaseolus vulgaris L.) in open-top chambers. Environmental Pollution, 90, 89–94.

    Article  CAS  Google Scholar 

  • Carnahan, J. E., Jenner, E. L., & Wat, E. K. W. (1978). Prevention of ozone injury in plants by a new protective chemical. Phytopathology, 68, 1225–1229.

    Article  CAS  Google Scholar 

  • Clarke, B. B., Greenhalgh-Weidman, B., & Brennan, E. G. (1990). An assessment of the impact of ambient ozone on field grown crops in New Jersey using the EDU (ethylene diurea) method: Part 1—white potato. Environmental Pollution, 66, 351–360.

    Article  CAS  Google Scholar 

  • Coyle, M., Fowler, D., & Ashmore, M. (2003). New directions: implications of increasing Tropospheric background ozone concentrations for vegetation. Atmospheric Environment, 37, 153–154.

    Article  CAS  Google Scholar 

  • Debaje, S. B., & Kakade, A. D. (2009). Surface ozone variability over western Maharashtra, India. Journal of Hazardous Materials, 161, 686–700.

    Article  CAS  Google Scholar 

  • Elagoz, V., & Manning, W. J. (2002). Ozone and bean plants: morphology matters. Environmental Pollution, 120, 521–524.

    CAS  Google Scholar 

  • Emberson, L. D., Buker, P., Ashmore, M. R., Mills, G., Jackson, L. S., Agrawal, M., et al. (2009). A comparison of North America and Asian exposure-response data for ozone effects on crop yields. Atmospheric Environment, 43, 1945–1953.

    Article  CAS  Google Scholar 

  • Ensing, J., Hofstra, G., & Roy, R. C. (1985). The impact of ozone on peanut exposed in the laboratory and field. Phytopathology, 75(4), 429–432.

    Article  CAS  Google Scholar 

  • Feng, Z., Pang, J., Kobayashi, K., Zhu, J., & Ort, D. R. (2010). Differential responses in two varieties of winter wheat to elevated ozone concentration under fully open-air field conditions. Global Change Biology. doi:10.1111/j.1365-2486.2010.02184.X.

    Google Scholar 

  • FAO-UN, (2003). FAO Trade Yearbook, vol. 165. Publising Management Service, Information Division, FAO.

  • Gelang, J., Pleijel, H., Sild, E., Danielsson, H., Younis, S., & Selldén, G. (2000). Rate and duration of grain filling in relation to flag leaf senescence and grain yield in spring wheat (Triticum aestivum) exposed to different concentrations of ozone. Physiologia Plantarum, 110, 366–375.

    Article  CAS  Google Scholar 

  • Hassan, I. A. (2006). Physiology and biochemical response of potato (Solanum tuberosum L. cv. Kara) to O3 and antioxidant chemicals: possible roles of antioxidant enzymes. Annals of Applied Biology, 148, 197–206.

    Article  CAS  Google Scholar 

  • Hassan, I. A., Ashmore, M. R., & Bell, J. N. B. (1995). Effect of ozone on radish and turnip under Egyptian field conditions. Environmental Pollution, 89, 107–114.

    Article  CAS  Google Scholar 

  • Hassan, I. A., Bell, J. N. B., & Marshall, F. M. (2007). Effects of air filtration on Egyptian clover (Trifolium alexandrinum L. cv. Messkawy) grown in open-top chambers in a rural site in Egypt. Research Journal of Biological Science, 2(4), 395–402.

    Google Scholar 

  • Heagle, A. S., Miller, J. E., Burkey, K. O., Eason, G., & Pursley, W. A. (2002). Growth and yield responses of snap bean to mixtures of carbon dioxide and ozone. Journal of Environmental Quality, 31, 2008–2014.

    Article  CAS  Google Scholar 

  • Heagle, A. S., Miller, J. E., & Pursley, W. A. (2003). Atmospheric pollutants and trace gases: growth and yield responses of potato to mixtures of carbon dioxide and ozone. Journal of Environmental Quality, 32, 1603–1610.

    Article  CAS  Google Scholar 

  • Heck, W. W., Taylor, O. C., & Tingey, D. T. (1988). Assessment of crop loss from air pollutants. New York: Elsevier.

    Google Scholar 

  • Hunt, R. (1982). Growth curves. London: Edward Arnold Publishers.

    Google Scholar 

  • Ishii, S., Marshall, F. M., Bell, J. N. B., & Abdullah, A. M. (2004). Impact of ambient air pollution on locally grown rice cultivars (Oryza sativa L.) in Malaysia. Water Air and Soil Pollution, 154, 187–201.

    Article  CAS  Google Scholar 

  • Krupa, S. V., Nosal, M., & Legge, A. H. (1998). A numerical analysis of the combined open top chamber data from the USA and Europe on ambient ozone and negative crop responses. Environmental Pollution, 101, 157–160.

    Article  CAS  Google Scholar 

  • Kuehler, E. A., & Flagler, R. B. (1999). The effects of sodium erythorbate and ethylenediurea on Photosynthetic function of ozone-exposed loblolly pine seedlings. Environmental Pollution, 105, 25–35.

    Article  CAS  Google Scholar 

  • Lal, S., Naja, M., & Subbaraya, B. H. (2000). Seasonal variations in surface ozone and its precursors over an urban site in India. Atmospheric Environment, 34, 2713–2724.

    Article  CAS  Google Scholar 

  • Lee, E. H., & Chen, C. M. (1982). Studies on the mechanisms of ozone tolerance. Cytokinin like activity of N [2-(2-oxo-1-imidazolidinyl) ethyl]-N-phenylurea, a compound protecting against O3 injury. Physiologia Plantarum, 56, 486–491.

    Article  CAS  Google Scholar 

  • Manning, W. J., Flagler, R. B., & Frenkel, M. A. (2003). Assessing plant response to ambient ozone: growth of ozone-sensitive loblolly pine seedlings treated with ethylene diurea or sodium erythorbate. Environmental Pollution, 126, 73–81.

    Article  CAS  Google Scholar 

  • McKee, I. F., Eiblmeier, M., & Polle, A. (1997). Enhanced ozone-tolerance in wheat grown at an elevated CO2 concentration: ozone exclusion and detoxification. New Phytologist, 135, 275–284.

    Article  Google Scholar 

  • Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., et al. (2007). Global climate projections. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Morgan, P. B., Ainsworth, E. A., & Long, S. P. (2003). How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant Cell and Environment, 26, 1317–1328.

    Article  CAS  Google Scholar 

  • Mulholland, J. A., Butler, A. J., Wilkinson, J. G., & Russell, A. G. (1998). Temporal and spatial distributions of ozone in Atlanta: Regulatory and epidemiologic implications. Journal of Air Waste Management Association, 48, 418–426.

    CAS  Google Scholar 

  • Nair, P. R., Chand, D., Lal, S., Modh, K. S., Naja, M., Parameswaran, K., et al. (2002). Temporal variations in surface ozone at Thumba (8.6°N, 77°E): A tropical coastal site in India. Atmospheric Environment, 36, 603–610.

    Article  CAS  Google Scholar 

  • Naja, M., & Lal, S. (2002). Surface ozone and precursor gases at Gadanki (13.5°N, 79.2°E): A tropical rural site in India. Journal of Geophysical Research, 107(14), 417–418.

    Article  Google Scholar 

  • Pandey, J., & Agrawal, M. (1994). Evaluation of air pollution phytotoxicity in a seasonally dry tropical urban environment using three woody perennials. New Phytologist, 126, 53–61.

    Article  CAS  Google Scholar 

  • Pang, J., Kobayashi, K., & Zhu, J. (2009). Yield and photosynthetic characteristics of flag leaves in Chinese rice (Oryza sativa L.) varities subjected to free-air release of ozone. Agriculture, Ecosystems and Environment, 132, 203–211.

    Article  CAS  Google Scholar 

  • Pleijel, H., Mortensen, L., Fuhrer, J., Ojanpera, K., & Danielsson, H. (1999). Grain protein accumulation in relation to grain yield of spring wheat (Triticum aestivum L.) grown in open-top chambers with different concentrations of ozone, carbon dioxide and water availability. Agriculture, Ecosystems and Environment, 72, 262–270.

    Article  Google Scholar 

  • Rai, R., & Agrawal, M. (2008). Evaluation of physiological and biochemical responses of two rice (Oryza sativa L.) cultivars to ambient air pollution using open top chambers at a rural site in India. Science of the Total Environment, 407, 679–691.

    Article  CAS  Google Scholar 

  • Rai, R., Agrawal, M., & Agrawal, S. B. (2007). Assessment of yield losses in tropical wheat using open top chambers. Atmospheric Environment, 41, 9543–9554.

    Article  CAS  Google Scholar 

  • Rai, R., Agrawal, M., & Agrawal, S. B. (2010). Threat to food security under current levels of ground level ozone: a case study for Indian cultivars of rice. Atmospheric Environment. doi:10/1016/j.atmosenv.2010.06.022.

    Google Scholar 

  • Ribas, A., & Penuelas, J. (2000). Effects of ethylenediurea as a protective antiozonant on beans (Phaseolus vulgaris cv Lit) exposed to different tropospheric ozone doses in Catalonia (NE Spain). Water Air and Soil Pollution, 117, 263–271.

    Article  CAS  Google Scholar 

  • Sarkar, A., & Agrawal, S. B. (2009). Identication of ozone stress in Indian rice through foliar injury and differential protein profile. Environmental Monitoring and Assessment, 161, 205–215.

    Article  Google Scholar 

  • Sarkar, A., & Agrawal, S. B. (2010). Elevated ozone and two modern wheat cultivars: An assessment of dose dependent sensitivity with respect to growth, reproductive and yield parameters. Environmental and Experimental Botany, 69, 328–337.

    Article  CAS  Google Scholar 

  • Singh, S., & Agrawal, S. B. (2009). Use of ethylenediurea (EDU) in assessing the impact of ozone on growth and productivity of five cultivars of Indian wheat (Triticum aestivum L.). Environmental Monitoring and Assessment, 159(1), 125–141.

    Article  CAS  Google Scholar 

  • Singh, S., Agrawal, S. B., & Agrawal, M. (2009). Differential protection of ethylenediurea against ambient ozone for five cultivars of tropical wheat. Environmental Pollution, 157, 2359–2367.

    Article  CAS  Google Scholar 

  • Singh, S., Agrawal, M., Agrawal, S. B., Emberson, L., & Büker, P. (2010). Use of ethylenediurea for assessing the impact of ozone on mung bean plants at a rural site in a dry tropical region of India. International Journal of Environmental Waste Management, 5(1/2), 125–139.

    Article  CAS  Google Scholar 

  • Szantoi, Z., Chappelka, A. H., Muntifering, R. B., & Somers, G. L. (2009). Cutleaf coneflower (Rudbeckia laciniata L.) response to ozone and ethylenediurea (EDU). Environmental Pollution, 157, 840–846.

    Article  CAS  Google Scholar 

  • Tingey, D. T., & Blum, U. (1973). Effects of ozone on soybean nodules. Journal of Environmental Quality, 2, 314–342.

    Article  Google Scholar 

  • Tiwari, S., & Agrawal, M. (2009). Protection of palak (Beta vulgaris L. var Allgreen) plants from ozone injury ethylenediurea (EDU): roles of biochemical and physiological variations in alleviating the adverse impacts. Chemosphere, 75, 1492–1499.

    Article  CAS  Google Scholar 

  • Tiwari, S., Agrawal, M., & Manning, W. J. (2005). Assessing the effects of ambient ozone on growth and productivity of two cultivars of wheat in India using three rates of application of ethylenediurea (EDU. Environmental Pollution, 138, 153–160.

    Article  CAS  Google Scholar 

  • Tiwari, S., Agrawal, M., & Marshall, F. (2006). Evaluation of ambient air pollution impact on carrot plants at a suburban site using open top chamber. Environmental Monitoring and Assessment, 266, 15–30.

    Article  Google Scholar 

  • Tiwari, S., Rai, R., & Agrawal, M. (2008). Annual and seasonal variations in tropospheric ozone concentrations around Varanasi. International Journal of Remote Sensing, 29, 4499–4514.

    Article  Google Scholar 

  • Varotsos, C., Chronopoulos, G., & Kalabokas, P. (1994). Seasonal variation and cross tropopause ozone exchange at Athens, Greece. In Proceedings of the 3rd EUROTRAC symposium-photooxidants: Precursors and products, Garmish-Partenkirchen, Germany, pp 305–309.

  • Varshney, C. K., & Rout, C. (1998). Ethylenediurea (EDU) protection against ozone injury in Tomato plants in Delhi. Bulletin of Environmental Contamination and Toxicology, 61, 188–193.

    Article  CAS  Google Scholar 

  • Vingarzan, R. (2004). A review of surface ozone background levels and trends. Atmospheric Environment, 38, 3431–3442.

    Article  CAS  Google Scholar 

  • Vollsnes, A. V., Krusea, O. M. O., Eriksenb, A. B., Oxaala, U., & Futsaethera, C. M. (2010). In vivo root growth dynamics of ozone exposed Trifolium subterraneum. Environmental and Experimental Botany. doi:10.1016/j.envexpbot.2010.03.007.

    Google Scholar 

  • Wahid, A., Maggs, R., Shamshi, S. R. A., Bell, J. N. B., & Ashmore, M. R. (1995). Air pollution and its impact on rice yield in Pakistan Punjab. Environment Pollution, 90, 323–329.

    Article  CAS  Google Scholar 

  • Wahid, A., Milne, E., Shamshi, S. R., Ashmore, M. R., & Marshall, F. M. (2001). Effects of oxidants on soybean growth and yield in the Pakistan Punjab. Environmental Pollution, 113, 271–280.

    Article  CAS  Google Scholar 

  • Wang, X. K., Zheng, Q. W., Yao, F. F., Chen, Z., Feng, Z. Z., & Manning, W. J. (2007). Assessing the impact of ambient ozone on growth and yield of a rice (Oryza sativa L.) and a wheat (Triticum aestivum L.) cultivar grown in the Yangtze Delta, China, using three rates of application of ethylenediurea (EDU). Environmental Pollution, 148, 390–395.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Head, Department of Botany, Banaras Hindu University for laboratory facilities and to the Ministry of Environment and Forest, New Delhi for providing financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Agrawal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S., Agrawal, S.B. Cultivar-Specific Response of Soybean (Glycine max L.) to Ambient and Elevated Concentrations of Ozone Under Open Top Chambers. Water Air Soil Pollut 217, 283–302 (2011). https://doi.org/10.1007/s11270-010-0586-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0586-7

Keywords

Navigation