Presence of Pharmaceuticals and Hormones in Waters from Sewage Treatment Plants

Abstract

This paper describes the presence of 33 pharmaceuticals and hormones in waters from two sewage treatment plants (STPs) situated in Catalonia, in northeastern Spain. The target compounds were one psychoactive stimulant, one antiepileptic, four analgesics and non-steroidal anti-inflammatories, one lipid regulators, two anti-ulcer agents, nine antibiotics (sulfonamides and macrolides), two beta-blockers, two metabolites, and 11 hormones (free and conjugates). The determination was performed using liquid chromatography coupled to tandem mass spectrometry after enrichment by solid-phase extraction with Oasis HLB sorbent. Most of the pharmaceuticals were found in both influent and effluent samples from the two STPs. The most frequently detected were caffeine, acetaminophen, carbamazepine, diclofenac, ibuprofen, naproxen, sulfamethoxazole, sulfapyridine, sulfathiazole, ranitidine, omeprazole, estrone 3-sulfate, and estradiol 17-glucuronide. Specifically, the highest concentrations found in influents were 19,850 ng/L (acetaminophen), 9,945 ng/L (caffeine), 4,215 ng/L (ibuprofen), 5,695 ng/L (sulfamethoxazole), and 5,140 ng/L (sulfathiazole). Most of the pharmaceuticals present in influent waters were found in effluents at lower concentrations. The highest concentrations in effluents were 970 ng/L (caffeine), 670 ng/L (sulfamethoxazole), 510 ng/L (bezafibrate), and 1,032 ng/L (diclofenac).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Auriol, M., Filali-Meknassi, Y., Tyagi, R. D., Adams, C. D., & Surampalli, R. Y. (2006). Endocrine disrupting compounds removal from wastewater, a new challenge. Process Biochem, 41, 525–539.

    Article  CAS  Google Scholar 

  2. Baquero, F., Martínez, J. L., & Cantón, R. (2008). Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol, 19, 260–265.

    Article  CAS  Google Scholar 

  3. Benítez, F. J., Real, F. J., Acero, J. L., & Roldan, G. (2009). Removal of selected pharmaceuticals in waters by photochemical processes. J Chem Technol Biotechnol, 84, 1186–1195.

    Article  Google Scholar 

  4. Benner, J., & Ternes, T. A. (2009). Ozonation of metoprolol: Elucidation of oxidation pathways and major oxidation products. Environ Sci Technol, 43, 5472–5480.

    Article  CAS  Google Scholar 

  5. Benotti, M. J., Trenholm, R. A., Vanderford, B. J., Holady, J. C., Stanford, B. D., & Snyder, S. A. (2009). Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environ Sci Technol, 43, 597–603.

    Article  CAS  Google Scholar 

  6. Bolong, N., Ismail, A. F., Salim, M. R., & Matsuura, T. (2009). A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination, 239, 229–246.

    Article  CAS  Google Scholar 

  7. Coetsier, C., Lin, L., Roig, B., & Touraud, E. (2007). Integrated approach to the problem of pharmaceutical products in the environment: An overview. Anal Bioanal Chem, 387, 1163–1166.

    Article  CAS  Google Scholar 

  8. Conley, J. M., Symes, S. J., Kindelberger, S. A., & Richards, S. M. (2008). Rapid liquid chromatography–tandem mass spectrometry method for the determination of a broad mixture of pharmaceuticals in surface water. J Chromatogr A, 1185, 206–215.

    Article  CAS  Google Scholar 

  9. Díaz-Cruz, M. S., García-Galán, M. J., & Barceló, D. (2008). Highly sensitive simultaneous determination of sulfonamide antibiotics and one metabolite in environmental waters by liquid chromatography-quadrupole linear ion trap-mass spectrometry. J Chromatogr A, 1193, 50–59.

    Article  Google Scholar 

  10. Ding, J., Ren, N., Chen, L., & Ding, L. (2009). On-line coupling of solid-phase extraction to liquid-chromatography–tandem mass spectrometry for the determination of macrolide antibiotics in environmental water. Anal Chim Acta, 364, 215–221.

    Article  Google Scholar 

  11. Farré, M., Brix, R., Kuster, M., Rubio, F., Goda, Y., López de Alda, M. J., et al. (2006). Evaluation of commercial immunoassays for the detection of estrogens in water by comparison with high-performance liquid chromatography tandem mass spectrometry HPLC-MS/MS (QqQ). Anal Bioanal Chem, 385, 1001–1011.

    Article  Google Scholar 

  12. Farré, M., Gros, M., Hernández, B., Petrovic, M., Hancock, P., & Barceló, D. (2008a). Analysis of biologically active compounds in water by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom, 22, 41–51.

    Article  Google Scholar 

  13. Farré, M., Petrovic, M., Gros, M., Kosjek, T., Martínez, E., Heath, E., et al. (2008b). First interlaboratory exercise on non-steroidal anti-inflammatory drugs analysis in environmental samples. Talanta, 76, 580–590.

    Article  Google Scholar 

  14. Gagnoc, C., & Lajeunesse, A. (2008). Persistence and fate of highly soluble pharmaceutical products in various types of municipal wastewater treatment plants. Waste Manag Environ IV, 109, 799–807.

    Article  Google Scholar 

  15. Gebhardt, W., & Schroder, H. F. (2007). Liquid chromatography–(tandem) mass spectrometry for the follow-up of the elimination of persistent pharmaceuticals during wastewater treatment applying biological wastewater treatment and advanced oxidation. J Chromatogr A, 1160, 34–43.

    Article  CAS  Google Scholar 

  16. Göbel, A., Ardell, C. S. M., Suter, M., & Giger, W. (2004). Trace determination of macrolide and sulfonamide antimicrobial, a human sulfonamide metabolite, and trimethoprim in wastewater using liquid chromatography coupled to electrospray tandem mass spectrometry. Anal Chem, 76, 4756–4764.

    Article  Google Scholar 

  17. Gros, M., Petrovic, M., & Barceló, D. (2006). Multi-residue analytical methods using LC-tandem MS for the determination of pharmaceuticals in environmental and wastewater samples: A review. Anal Bioanal Chem, 386, 941–952.

    Article  CAS  Google Scholar 

  18. Gros, M., Pizzolato, T. M., Petrovic, M., López de Alda, M. J., & Barceló, D. (2008). Trace level determination of β-blockers in waste waters by highly selective molecularly imprinted polymers extraction followed by liquid chromatography-quadrupole-linear ion trap mass spectrometry. J Chromatogr A, 1189, 374–384.

    Article  CAS  Google Scholar 

  19. Gros, M., Petrovic, M., & Barceló, D. (2009). Tracing pharmaceutical residues of different therapeutic classes in environmental waters by using liquid chromatography/quadrupole-linear ion trap mass spectrometry and automated library searching. Anal Chem, 81, 898–912.

    Article  CAS  Google Scholar 

  20. Heberer, T. (2002). Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data. Toxicol Lett, 131, 5–17.

    Article  CAS  Google Scholar 

  21. Hernández, F., Sancho, J. V., Ibañez, M., & Guerrero, C. (2007). Antibiotic residue determination in environmental waters by LC-MS. Trends Anal Chem, 26, 466–485.

    Article  Google Scholar 

  22. Hernando, M. D., Mezcua, M., Gómez, M. J., Malato, O., Aguera, A., & Fernández-Alba, A. R. (2004). Comparative study of analytical methods involving gas chromatography–mass spectrometry after derivatization and gas chromatography–tandem mass spectrometry for the determination of selected endocrine disrupting compounds in wastewaters. J Chromatogr A, 1047, 129–135.

    Article  CAS  Google Scholar 

  23. Hernando, M. D., Heat, E., Petrovic, M., & Barceló, D. (2006). Trace-level determination of pharmaceutical residues by LC-MS-MS in natural and treated waters. A pilot-survey study. Anal Bioanal Chem, 385, 985–991.

    Article  CAS  Google Scholar 

  24. Hilton, M. J., & Thomas, K. V. (2003). Determination of selected human pharmaceutical compounds in effluent and surface water samples by high-performance liquid chromatography–electrospray tandem mass spectrometry. J Chromatogr A, 1015, 129–141.

    Article  CAS  Google Scholar 

  25. Huerta-Fontela, M., Galceran, M. T., Martín-Alonso, J., & Ventura, F. (2008). Occurrence of psychoactive stimulatory drugs in wastewaters in north-eastern Spain. Sci Total Environ, 397, 31–40.

    Article  CAS  Google Scholar 

  26. Karthikeyan, K. G., & Meyer, M. T. (2006). Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Sci Total Environ, 361, 196–207.

    Article  CAS  Google Scholar 

  27. Khalaf, H., Salste, L., Karlsson, P., Ivarsson, P., Jass, J., & Olsson, P. E. (2009). In vitro analysis of inflammatory responses following environmental exposure to pharmaceuticals and inland waters. Sci Total Environ, 407, 1452–1460.

    Article  CAS  Google Scholar 

  28. Kuster, M., López de Alda, M. J., Hernando, M. D., Petrovic, M., Martín-Alonso, J., & Barceló, D. (2008). Analysis and occurrence of pharmaceuticals, estrogens, progestrogens and polar pesticides in sewage treatment plant effluents, river water and drinking water in the Llobregat river basin (Barcelona, Spain). J Hidrol, 358, 112–123.

    Article  CAS  Google Scholar 

  29. Kvanli, D. M., Marisetty, S., Anderson, T. A., Jackson, W. A., & Morse, A. N. (2008). Monitoring estrogen compounds in wastewater recycling systems. Water Air Soil Pollut, 188, 31–40.

    Article  CAS  Google Scholar 

  30. Lacey, C., McMahon, G., Bones, J., Barron, L., Morrissey, A., & Tobin, J. M. (2008). An LC-MS method for the determination of pharmaceutical compounds in wastewater treatment plant influent and effluent samples. Talanta, 75, 1089–1097.

    Article  CAS  Google Scholar 

  31. Managaki, S., Murata, A., Takada, H., Tuyen, B. C., & Chiem, N. H. (2007). Distribution of macrolides, sulfonamides, and trimethoprim in tropical waters: Ubiquitous occurrence of veterinary antibiotics in the Mekong Delta. Environ Sci Technol, 41, 8004–8010.

    Article  CAS  Google Scholar 

  32. Nakada, N., Shinohara, H., Murata, A., Kiri, K., Managaki, S., Sato, N., et al. (2007). Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Res, 41, 4373–4382.

    Article  CAS  Google Scholar 

  33. Nieto, A., Borrull, F., Pocurull, E., & Marcé, R. M. (2008). Determination of natural and synthetic estrogens and their conjugates in sewage sludge by pressurized liquid extraction and liquid chromatography–tandem mass spectrometry. J Chromatogr A, 1213, 224–230.

    Article  CAS  Google Scholar 

  34. Nikolaou, A., Meric, S., & Fatta, D. (2007). Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal Bioanal Chem, 387, 1225–1234.

    Article  CAS  Google Scholar 

  35. Pedrouzo, M., Reverté, S., Borrull, F., Pocurull, E., & Marcé, R. M. (2007). Pharmaceutical determination in surface and wastewaters using high-performance liquid chromatography–(electrospray)-mass spectrometry. J Sep Sci, 30, 297–303.

    Article  CAS  Google Scholar 

  36. Pedrouzo, M., Borrull, F., Marcé, R. M., & Pocurull, E. (2008). Simultaneous determination of macrolides, sulfonamides, and other pharmaceuticals in water samples by solid-phase extraction and LC-(ESI)MS. J Sep Sci, 31, 2182–2188.

    Article  CAS  Google Scholar 

  37. Pedrouzo, M., Borrull, F., Pocurull, E., & Marcé, R. M. (2009). Estrogens and their conjugates: Determination in water samples by solid-phase extraction and liquid chromatography–tandem mass spectrometry. Talanta, 78, 1327–1331.

    Article  CAS  Google Scholar 

  38. Peng, X., Yu, Y., Tang, C., Tan, J., Huang, Q., & Wang, Z. (2008). Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Sci Total Environ, 397, 158–166.

    Article  CAS  Google Scholar 

  39. Radjenovic, J., Petrovic, M., Ventura, F., & Barceló, D. (2008). Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res, 42, 3601–3610.

    Article  CAS  Google Scholar 

  40. Rodríguez-Mozaz, S., López de Alda, M. J., & Barceló, D. (2004). Picogram per liter level determination of estrogens in natural waters and waterworks by a fully automated on-line solid-phase extraction-liquid chromatography–electrospray tandem mass spectrometry method. Anal Chem, 76, 6998–7006.

    Article  Google Scholar 

  41. Servos, M. R., Bennie, D. T., Burnison, B. K., Jurkovic, A., McInnis, R., Neheli, T., et al. (2005). Distribution of estrogens, 17β-estradiol and estrone, in Canadian municipal wastewater treatment plants. Sci Total Environ, 336, 155–170.

    Article  CAS  Google Scholar 

  42. Sponberg, A. L., & Witter, J. D. (2008). Pharmaceutical compounds in the wastewater process stream in northwest Ohio. Sci Total Environ, 397, 148–157.

    Article  Google Scholar 

  43. Ternes, T. A., Bonerz, M., Herrmann, N., Teiser, B., & Andersen, H. R. (2007). Irrigation of treated wastewater in Braunschweig, Germany: An option to remove pharmaceuticals and musk fragrances. Chemosphere, 66, 894–904.

    Article  CAS  Google Scholar 

  44. Tixier, C., Singer, H. P., Oellers, S., & Müller, S. (2003). Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environ Sci Technol, 37, 1061–1068.

    Article  CAS  Google Scholar 

  45. Vanderford, B. J., & Snyder, S. A. (2006). Analysis of pharmaceuticals in water by isotope dilution liquid chromatography/tandem mass spectrometry. Environ Sci Technol, 40, 7312–7320.

    Article  CAS  Google Scholar 

  46. Viglino, L., Aboulfadl, K., Prévost, M., & Sauvé, S. (2008). Analysis of natural and synthetic estrogenic endocrine disruptors in environmental waters using online preconcentration coupled with LC-APPI-MS/MS. Talanta, 76, 1088–1096.

    Article  CAS  Google Scholar 

  47. Vulliet, E., Wiest, L., Baudot, R., & Grenier-Loustalot, M. F. (2008). Multi-residue analysis of steroids at sub-ng/L levels in surface and ground-waters using liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A, 1210, 84–91.

    Article  CAS  Google Scholar 

  48. Wu, C., Spongberg, A. L., & Witter, J. D. (2008). Use of solid phase extraction and liquid chromatography–tandem mass spectrometry for simultaneous determination of various pharmaceuticals in surface water. Int J Environ Anal Chem, 88, 1033–1048.

    Article  CAS  Google Scholar 

  49. Xu, X., Roman, J. M., Veenstra, T. D., Van Anda, J., Ziegler, R. G., & Issaq, H. J. (2006). Analysis of fifteen estrogen metabolites using packed column supercritical fluid chromatography–mass spectrometry. Anal Chem, 78, 1553–1558.

    Article  CAS  Google Scholar 

  50. Ye, Z., & Weinberg, H. S. (2007). Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry. Anal Chem, 79, 1135–1144.

    Article  CAS  Google Scholar 

  51. Zhao, X., & Metcalfe, C. D. (2008). Characterizing and compensating for matrix effects using atmospheric pressure chemical ionization liquid chromatography–tandem mass spectrometry: Analysis of neutral pharmaceuticals in wastewater. Anal Chem, 80, 2010–2017.

    Article  CAS  Google Scholar 

  52. Zhou, J. L., Zhang, Z. L., Banks, E., Grover, D., & Jiang, J. Q. (2009). Pharmaceutical residues in wastewater treatment works effluents and their impact on receiving river water. J Hazard Mater, 166, 655–661.

    Article  CAS  Google Scholar 

  53. Zwiener, C. (2007). Occurrence and analysis of pharmaceuticals and their transformation products in drinking water treatment. Anal Bioanal Chem, 387, 1159–1162.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Dirección General de Investigación of the Ministry of Science and Technology, project CTM2008-06847-C02-01/TECNO. The authors wish to thank the personnel of the sewage treatment plants for the sampling facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eva Pocurull.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pedrouzo, M., Borrull, F., Pocurull, E. et al. Presence of Pharmaceuticals and Hormones in Waters from Sewage Treatment Plants. Water Air Soil Pollut 217, 267–281 (2011). https://doi.org/10.1007/s11270-010-0585-8

Download citation

Keywords

  • Hormones
  • Pharmaceuticals
  • LC-MS-MS
  • SPE
  • Wastewaters