Skip to main content
Log in

Methane Fluxes from Alpine Wetlands of Zoige Plateau in Relation to Water Regime and Vegetation under Two Scales

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Methane fluxes in alpine ecosystems remain insufficiently studied, especially in terms of the magnitude, temporal, and spatial patterns. To quantify the mean methane emission of alpine ecosystems, methane fluxes were measured among six ecosystems and microsites within each ecosystem at Zoige National Wetland Reserve. The average methane emission from Zoige Plateau was 2.25 mg CH4 m−2 h−1, which fell into the range of methane emission rate reported by a number of studies in other alpine wetlands. Prevailing ecosystem types had important impacts on the methane flux on the landscape scale. In the wet ecosystems, the microsites had different methane emissions resulting from the differences in the depth of water table and associated vegetation characteristics. The identification of the microsites based on their vegetation characteristics thus allows upscaling of methane emissions in these ecosystems. However, in the dry ecosystems showing even methane uptake, the spatial variation in the methane fluxes was low and the vegetation has a poor predicative value for the methane fluxes. There, the soil porosity linked to the gas diffusion rate in soil would be the key factor explaining methane fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ambus, P., & Christensen, S. (1995). Spatial and Seasonal Nitrous-Oxide and Methane Fluxes in Danish Forest-Ecosystems, Grassland-Ecosystems, and Agroecosystems. Journal of Environmental Quality, 24, 993–1001.

    Article  CAS  Google Scholar 

  • Bergstrom, I., Makela, S., Kankaala, P., & Kortelainen, P. (2007). Methane efflux from littoral vegetation stands of southern boreal lakes: An upscaled regional estimate. Atmospheric Environment, 41, 339–351.

    Article  Google Scholar 

  • Bubier, J., Costello, A., Moore, T. R., Roulet, N. T., & Savage, K. (1993). Microtopography and Methane Flux in Boreal Peatlands, Northern Ontario, Canada. Canadian Journal of Botany-Revue Canadienne De Botanique, 71, 1056–1063.

    Google Scholar 

  • Bubier, J., Moore, T., Savage, K., & Crill, P. (2005). A comparison of methane flux in a boreal landscape between a dry and a wet year. Global Biogeochemical Cycles, 19, B1023–B1023.

    Article  Google Scholar 

  • Bubier, J. L. (1995). The Relationship of Vegetation to Methane Emission and Hydrochemical Gradients in Northern Peatlands. Journal of Ecology, 83, 403–420.

    Article  Google Scholar 

  • Cai, Y., Lang, H. Q., & Wang, X. Y. (1965). Mires of Zoige Plateau. Beijing: Science (in Chinese only).

    Google Scholar 

  • Cao, M., Gregson, K., & Marshall, S. (1988). Global methane emission from wetlands and its sensitivity to climate change. Atmospheric Environment, 32, 3293–3299.

    Article  Google Scholar 

  • Chen, H., Yao, S. P., Wu, N., Wang, Y. F., Luo, P., Tian, J. P., et al. (2009). Spatial variations on methane emissions from Zoige alpine wetlands of Southwest China. Science of the Total Environment, 407, 1097–1104.

    Article  Google Scholar 

  • Chimner, R. A., & Cooper, D. J. (2003). Carbon dynamics of pristine and hydrologically modified fens in the southern Rocky Mountains. Candian Journal of Botany, 81, 477–491.

    Article  CAS  Google Scholar 

  • Cicerone, R. L., & Oremland, R. S. (1988). Biogeochemical aspects of atmospheric methane. Global Biogeochemical Cycles, 2, 716–722.

    Article  Google Scholar 

  • Crozier, C. R., & Delaune, R. D. (1996). Methane production by soils from different Louisiana marsh vegetation types. Wetlands, 16, 121–126.

    Article  Google Scholar 

  • Ding, W. X., Cai, Z. C., Tsuruta, H., & Li, X. P. (2002). Effect of standing water depth on methane emissions from freshwater marshes in northeast China. Atmospheric Environment, 36, 5149–5157.

    Article  CAS  Google Scholar 

  • Grünfeld, S., & Brix, H. (1999). Methanogenesis and methane emissions: effects of water table, substrate type and presence of Phragmites australis. Aquatic Botany, 64, 63–75.

    Article  Google Scholar 

  • Hein, R., Crutzen, P. J., & Heinmann, M. (1997). An inverse modeling approach to investigate the global atmospheric methane cycle. Global Biogeochemical Cycles, 11, 43–46.

    Article  CAS  Google Scholar 

  • Hirota, M., Tang, Y. H., Hu, Q. W., Hirata, S., Kato, M., Mo, W. H., et al. (2004). Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland. Soil Biology and Biochemistry, 36, 737–748.

    Article  CAS  Google Scholar 

  • Houweling, S., Kaminski, T., Dentener, F., Lelieveld, J., & Heimann, M. (1999). Inverse modeling of methane sources and sinks using the adjoint of a global transport model. Journal of Geophysical Research, 104, 22129–22145.

    Article  Google Scholar 

  • Hu, Q. W., Wu, Q., Li, D., & Cao, G. M. (2005). Comparative study on methane emissions from alpine grasslands with different soil water content. Chinese Journal of Ecology, 24, 118–122 (in Chinese only).

    Google Scholar 

  • Hutchinson, G. L., & Mosier, A. R. (1981). Improved soil cover method for field measurement of nitrous oxide fluxes. Soil Science Society of America Journal, 45, 311–316.

    Article  CAS  Google Scholar 

  • IPCC. (2001). Climate Change 2001: The Scientific Basis. New York: Cambridge University Press.

    Google Scholar 

  • Jin, H. J., Wu, J., Cheng, G. D., Tomoko, N., & Sun, G. Y. (1999). Methane emissions from wetlands on the Qinghai-Tibet Plateau. Chinese Science Bulletin, 44, 2282–2286.

    Article  CAS  Google Scholar 

  • Joabsson, A., & Christensen, T. R. (2001). Methane emissions from wetlands and their relationship with vascular plants: an Arctic example. Global Change Biology, 7, 919–932.

    Article  Google Scholar 

  • Johnson, H. S. (1984). Human effects on the global atmosphere. Annual Review of Physical Chemistry, 35, 481–505.

    Article  Google Scholar 

  • Keller, M., & Reiners, W. A. (1994). Soil Atmosphere Exchange of Nitrous-Oxide, Nitric-Oxide, and Methane under Secondary Succession of Pasture to Forest in the Atlantic Lowlands of Costa-Rica. Global Biogeochemical Cycles, 8, 399–409.

    Article  CAS  Google Scholar 

  • Keppler, F., Hamilton, J. T. G., Bra, M., & Röckmann, T. (2006). Methane emissions from terrestrial plants under aerobic conditions. Nature, 439, 187–191.

    Article  CAS  Google Scholar 

  • Kettunen, A. (2003). Connecting methane fluxes to vegetation cover and water table fluctuations at microsite level: A modeling study. Global Biogeochemical Cycles, 2, 1–19.

    Google Scholar 

  • Lelieveld, J., Crutzen, P., & Dentener, F. J. (1998). Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus, 50B, 128–150.

    CAS  Google Scholar 

  • Middelburg, J. J., Nieuwenhuize, J., Iverson, N., Høgh, N., Dewilde, H., Helder, W., et al. (2002). Methane distribution in European tidal estuaries. Biogeochemistry, 59, 95–119.

    Article  Google Scholar 

  • Mosier, A. R., & Delgado, J. A. (1997). Methane and nitrous oxide fluxes in grasslands in western Puerto Rico. Chemosphere, 35, 2059–2082.

    Article  CAS  Google Scholar 

  • Mosier, A. R., Parton, W. J., Valentine, D. W., Ojima, D. S., Schimel, D. S., & Delgado, J. A. (1996). CH4 and N2O fluxes in the Colorado shortgrass steppe.1. Impact of landscape and nitrogen addition. Global Biogeochemical Cycles, 10, 387–399.

    Article  CAS  Google Scholar 

  • Mosier, A. R., Schimel, D. S., Valentine, D. W., Bronson, K. F., & Parton, W. J. (1991). Methane and nitrous oxide fluxes in native, fertilized, and cultivated grasslands. Nature, 335, 330–332.

    Article  Google Scholar 

  • Nilsson, M., Mikkela, C., Sundh, I., Granberg, G., Svensson, B. H., & Ranneby, B. (2001). Methane emission from Swedish mires: National and regional budgets and dependence on mire vegetation. Journal of Geophysical Research, [Atmospheres], 106, 20847–20860.

    Article  CAS  Google Scholar 

  • Purvaja, R., Ramesh, R., & Frenzel, P. (2004). Plant-mediated methane emission from an Indian mangrove. Global Change Biology, 10, 1825–1834.

    Article  Google Scholar 

  • Reeburgh, W. S., King, J. Y., Regli, S. K., Kling, G. W., Auerbach, N. A., & Walker, D. A. (1998). A CH4 emission estimate for the Kuparuk River basin, Alaska. Journal of Geophysical Research, [Atmospheres], 103, 29005–29013.

    Article  CAS  Google Scholar 

  • Rinnan, R., Impio, M., Silvola, J., Holopainen, T., & Martikainen, P. J. (2003). Carbon dioxide and methane fluxes in boreal peatland microcosms with different vegetation cover - effects of ozone or ultraviolet-B exposure. Oecologia, 137, 475–483.

    Article  Google Scholar 

  • Rodhe, A. L. (1990). A conparison of the contribution of various gases to the greenhouse effect. Science, 248, 1217–1279.

    Article  CAS  Google Scholar 

  • Savage, K., Moore, T. R., & Crill, P. M. (1997). Methane and carbon dioxide exchanges between the atmosphere and northern boreal forest soils. Journal of Geophysical Research, [Atmospheres], 102, 29279–29288.

    Article  CAS  Google Scholar 

  • Smith, L. K., Lewis, W. M., Chanton, J. P., Cronin, G., & Hamilton, S. K. (2000). Methane emissions from the Orinoco River floodplain, Venezuela. Biogeochemistry, 51, 113–140.

    Article  Google Scholar 

  • Sommer, M., & Fiedler, S. (2002). Methane emissions from wetland soils in southwest-Germany. In G. Broll, W. Merbach, & E. M. Pfeiffer (Eds.), Wetlands in Central Europe: Soil Organisms, Soil Ecological Processes and Trace Gas Emissions. Heidelberg: Springer.

    Google Scholar 

  • Sorrell, B. K., & Dromgoole, F. I. (1987). Oxygen transport in the submerged freshwater macrophyte Egeria densa Planch I. Oxygen production, storage and release. Aquatic Botany, 28, 63–80.

    Article  Google Scholar 

  • Striegl, R. G. (1993). Diffusional Limits to the Consumption of Atmospheric Methane by Soils. Chemosphere, 26, 715–720.

    Article  CAS  Google Scholar 

  • Van Den Pol-Van Dasselaar, A., Van Beusichem, M. L., & Oenema, O. (1999). Determinants of spatial variability of methane emissions from wet grasslands on peat soil. Biogeochemistry, 44, 221–237.

    Article  Google Scholar 

  • Verma, A., Subramanian, V., & Ramesh, R. (2002). Methane emissions from a coastal lagoon: Vembanad Lake, West Coast, India. Chemosphere, 47, 883–889.

    Article  CAS  Google Scholar 

  • Waddington, J. M., & Roulet, N. T. (1996). Atmosphere-wetland carbon exchanges: Scale dependency of CO2 and CH4 exchange on the developmental topography of a peatland. Global Biogeochemical Cycles, 10, 233–245.

    Article  CAS  Google Scholar 

  • Wang, M. H. (1987). Pollen composition, paleovegetation and paleoclimate of peatlands in Zoige Plateau. Scientia Geographica Sinica, 18, 145–155 (in Chinese only).

    Google Scholar 

  • Wang, Y., Ji, B., Chen, Z., & Ojima, D. (2000). Prelimilary results of a study on CH4 in Xilin river basin steppe different grazing intensities. Acta Phytoecologica Sinica, 24, 693–696 (in Chinese only).

    Google Scholar 

  • Wang, Z. P., Han, X. G., & Li, L. H. (2006). Methane emission patches in riparian marshes of the inner Mongolia. Atmospheric Environment, 40, 5528–5532.

    Article  CAS  Google Scholar 

  • West, A. E., Brooks, P. D., Fisk, M. C., Smith, L. K., Holland, E. A., Jaeger, C. H., et al. (1999). Landscape patterns of CH4 fluxes in an alpine tundra ecosystem. Biogeochemistry, 45, 243–264.

    Google Scholar 

  • Whalen, S. C., & Reeburgh, W. S. (1992). Interannual variations in tundra methane flux: A 4-year time series at fixed sites. Global Biogeochemical Cycles, 6, 139–160.

    Article  CAS  Google Scholar 

  • Whiting, G. J., & Chanton, J. P. (1992). Plant-dependent CH4 emisison in subarctic Canadian fen. Global Biogeochemical Cycles, 6, 225–231.

    Article  CAS  Google Scholar 

  • Whiting, G. J., & Chanton, J. P. (1993). Primary Production Control of Methane Emission from Wetlands. Nature, 364, 794–795.

    Article  CAS  Google Scholar 

  • Wickland, K. P., Striegl, R. G., Mast, M. A., & Clow, D. W. (2001). Carbon gas exchange at a southern Rocky Mountain wetland, 1996–1998. Global Biogeochemical Cycles, 15, 321–335.

    Article  CAS  Google Scholar 

  • Wickland, K. P., Striegl, R. G., Schmidt, S. K., & Mast, M. A. (1999). Methane flux in subalpine wetland and unsaturated soils in the southern Rocky Mountains. Global Biogeochemical Cycles, 13, 101–113.

    Article  CAS  Google Scholar 

  • Xu, B. Q., & Yao, T. D. (2001). Dasuopu ice core record of atmospheric methane over the past 2000 years. Science in China. Series D: Earth Sciences, 44, 689–695.

    Article  CAS  Google Scholar 

  • Yao, T. D., Thompson, L. G., Duan, K. Q., Xu, B. Q., Wang, N. L., Pu, J. C., et al. (2002). Temperature and methane records over the last 2 ka in Dasuopu ice core. Science in China. Series D: Earth Sciences, 45, 1068–1074.

    Article  Google Scholar 

  • Zhou, H.M., Zen, L.X., Yu, G.N., & Liu, D.C. (1999). Analysis, utilization and protection of wetland resources in the Northwest Plateau of Sichuan Province Southwest China Journal of Agricultural Sciences, 12, (in Chinese only).

Download references

Acknowledgements

This study was financially supported by National Natural Foundation of China (40671181, 90511008), Natural Science Foundation Project of CQ CSTC (2009BB7182), Chinese Postdoctoral Foundation (20090460058), and Key Laboratory of Mountainous Ecological Restoration and Biological Resources Utilization, Chinese Academy of Sciences (KXYSWS0902). We must give personnel thanks to Mr. Zhang Ming and Mr. Li Hua for their suggestions and logistic arrangement on our field measurements. Ms. Wan Xiong, an expert for ESP, was thanked for her great and patient help in our writing and reasoning. The anonymous reviewer was thanked for his or her detailed evaluation and constructive suggestions about our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Wu, N., Wang, Y. et al. Methane Fluxes from Alpine Wetlands of Zoige Plateau in Relation to Water Regime and Vegetation under Two Scales. Water Air Soil Pollut 217, 173–183 (2011). https://doi.org/10.1007/s11270-010-0577-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0577-8

Keywords

Navigation