Skip to main content
Log in

Cinnamaldehyde Induces PCD-Like Death of Microcystis aeruginosa via Reactive Oxygen Species

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In recent years, Microcystis bloom occurs frequently and causes a wide range of social, environmental, and economic problems. In this study, dose-dependent inhibitory effect of cinnamaldehyde on the growth of Microcystis aeruginosa was investigated. It was found that cinnamaldehyde with the concentration more than 0.6 mM showed algicide activity against M. aeruginosa. When M. aeruginosa was exposed to 0.6 mM cinnamaldehyde, considerable reactive oxygen species (ROS) were generated followed by lipid peroxidation and decrease in the content of both chlorophyll a and soluble protein. Although superoxide dismutase had made response to the stress caused by cinnamaldehyde, activity increasing after a time of lag could not prevent the lysis of M. aeruginosa cells. Interestingly, the addition of antioxidants glutathione and l-ascorbic acid (Vc) could prevent the lysis of M. aeruginosa cells. All the results suggested that cinnamaldehyde induced the death of M. aeruginosa cells via inducing ROS burst. Further understanding of the mechanism of cinnamaldehyde-induced M. aeruginosa cell death would contribute to the control of cyanobacteria pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beauchamp, C., & Frodovich, I. (1971). Superoxide dismutase: improved assays and an assays applicable acrylamide gels. Analytical Biochemistry, 44, 276–287.

    Article  CAS  Google Scholar 

  • Bowles, B. L., & Miller, A. J. (1993). Antibotulinal properties of selected aromatic and aliphatic aldehydes. Journal of Food Protection, 56, 788–794.

    CAS  Google Scholar 

  • Bowles, B. L., Sackitey, S. K., & Williams, A. C. (1995). Inhibitory effects of flavor compounds on Staphylococcus aureus WRRC B124. Journal of Food Safety, 15, 337–347.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  • Briand, J. F., Jacquet, S., Bemard, C., & Humbert, J. F. (2003). Health hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems. Veterinary Research, 34, 361–377.

    Article  CAS  Google Scholar 

  • Brul, S., & Coote, P. (1999). Preservative agents in foods: mode of action and microbial resistance mechanisms. International Journal of Food Microbiology, 50, 1–17.

    Article  CAS  Google Scholar 

  • Codd, G. A., Bell, S. G., Kaya, K., Ward, C. J., Beattie, K. A., & Metcalf, J. S. (1999). Cyanobacterial toxins, exposure routes and human health. European Journal of Phycology, 34, 405–415.

    Article  Google Scholar 

  • Engelberg-Kulka, H., Sat, B., Reches, M., Amitai, S., & Hazan, R. (2004). Bacterial programmed cell death systems as targets for antibiotics. Trends in Microbiology, 12, 66–71.

    Article  CAS  Google Scholar 

  • Engelberg-Kulka, H., Amitai, S., Kolodkin-Gal, I., & Hazan, R. (2006). Bacterial Programmed Cell Death and Multicellular Behavior in Bacteria. PLoS Genetics, 2, 1518–1526.

    Article  CAS  Google Scholar 

  • Fallon, R. D., & Brock, T. D. (1979). Lytic organisms and photoxidative effects: influence on blue-green algae (cyanobacteria) in lake Mendota. Applied and Environmental Microbiology, 38, 499–505.

    CAS  Google Scholar 

  • Gill, A. O., & Holley, R. A. (2004). Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L. monocytogenes and Lactobacillus sakei. Applied and Environmental Microbiology, 70, 5750–5755.

    Article  CAS  Google Scholar 

  • Guo, L. (2007). Doing Battle with the Green Monster of Taihu Lake. Science, 317, 1166.

    Article  CAS  Google Scholar 

  • Han, D. C., Lee, M.-Y., Shin, K. D., Jeon, S. B., Kim, J. M., Son, K.-H., et al. (2004). 2’-Benzoyloxycinnamaldehyde Induces Apoptosis in Human Carcinoma via Reactive Oxygen Species. The Journal of Biological Chemistry, 279, 6911–6920.

    Article  CAS  Google Scholar 

  • Health, R. L., & Packer, G. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichemtry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.

    Article  Google Scholar 

  • Helander, I. M., Alakomi, H. L., Latva-Kala, K., Mattila-Sandholm, T., Pol, L., Smid, E. J., et al. (1998). Characterization of the action of selected essential oil components on Gram-negative bacteria. Journal of Agricultural and Food Chemistry, 46, 3590–3595.

    Article  CAS  Google Scholar 

  • Humpage, A. R., & Falconer, I. R. (1999). Microcystin-LR and liver tumour promotion: effects on Cytokinesis, Ploidy, and apoptosis in cultured hepatocytes. Environmental Toxicology, 14, 61–75.

    Article  CAS  Google Scholar 

  • Ito, E., Takai, A., Kondo, F., Masui, H., Imanishi, S., & Harada, K. I. (2002). Comparison of protein phosphatase inhibitory activity and apparent toxicity of microcystins and related compounds. Toxicon, 40, 1017–1025.

    Article  CAS  Google Scholar 

  • Jeffrey, S. W., & Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in high plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 4, 167–191.

    Google Scholar 

  • Kohanski, M. A., Dwyer, D. J., Hayate, B., Lawrence, C. A., & Collins, J. J. (2007). A common mechanism of cellular death induced by bacterial antibiotics. Cell, 130, 797–810.

    Article  CAS  Google Scholar 

  • Kolodkin-Gal, I., Sat, B., Keshet, A., & Engelberg-Kulka, H. (2008). Communication factor EDF and the toxin-antitoxin mazEF determine the mode of action of antibiotics. PLoS Biology, 6, 319.

    Article  Google Scholar 

  • Lam, A. K. Y., Prepas, E. E., Spink, D., & Hrudey, S. E. (1995). Chemical control of hepatotoxic phytoplankton blooms: implications for human health. Water Research, 29, 1845–1854.

    Article  CAS  Google Scholar 

  • Makarova, K. S., Wolf, Y. I., & Koonin, E. V. (2009). Comprehensive comparative-genomic analysis of Type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biology Direct, 4, 1–38.

    Article  Google Scholar 

  • Mazur-Marzec, H., Meriluoto, J., & Plinski, M. (2006). The degradation of the cyanobacterial hepatotoxin nodularin (NOD) by UV radiation. Chemosphere, 65, 1388–1395.

    Article  CAS  Google Scholar 

  • Nagasaki, K., Katanozaka, Y. T., Shirai, Y., Nishida, K., Itakura, S., & Yamaguchi, M. (2004). Isolation and Characterization of a Novel Single-Stranded RNA Virus Infecting the Bloom-Forming Diatom Rhizosolenia setigera. Applied and Environmental Microbiology, 70, 704–711.

    Article  CAS  Google Scholar 

  • Nychas, G.-J. E., & Skandamis, P. N. (2003). Antimicrobials from herbs and spices. In S. Roller (Ed.), Natural Antimicrobials for the Minimal Processing of Foods (pp. 176–200). Cambridge: Woodhead.

    Chapter  Google Scholar 

  • Okamoto, O. K., & Colepicolo, P. (1998). Response of superoxide dismutase to pollution metal stress in the marine dinoflagellate Gonyaulax polyedra. Computational Biology and Chemistry, 119C, 67–73.

    CAS  Google Scholar 

  • Paerl, H. W., & Huisman, J. (2008). Climate. Blooms like it hot. Science, 320, 57–58.

    Article  CAS  Google Scholar 

  • Schrader, K. K., Nanayakkara, N. P. D., Tucker, C. S., Rimando, A. M., Ganzera, M., & Schaneberg, B. T. (2003). Novel derivatives of 9, 10-anthraquinone are selective algicides against the musty-odor cyanobacterium Oscillatoria perornata. Applied and Environmental Microbiology, 69, 5319–5327.

    Article  CAS  Google Scholar 

  • Shi, H. X., Qu, J. H., Wang, A. M., & Ge, J. T. (2005). Degradation of microcystins in aqueous solution with in situ electrogenerated active chlorine. Chemosphere, 60, 326–333.

    Article  CAS  Google Scholar 

  • Shiu, C. T., & Lee, T. M. (2005). Ultraviolet-B-induced oxidative stress and responses of the ascorbate-glutathione cycle in a marine macroalga Ulva fasciata. Journal of Experimental Botany, 56, 2851–2865.

    Article  CAS  Google Scholar 

  • Stanier, R., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriology Reviews, 35, 171–205.

    Google Scholar 

  • Wang, S.-Y., Chen, P.-F., & Chang, S.-T. (2005). Antifungal activities of essential oils and their constituents from indigenous cinnamon (Cinnamomum osmophloeum) leaves against wood decay fungi. Bioresource Technology, 96, 813–818.

    Article  CAS  Google Scholar 

  • Xu, Q. J., Chen, W. M., & Gao, G. (2008). Seasonal variations in microcystin concentrations in Lake Taihu, China. Environmental Monitoring and Assessment, 145, 75–79.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Special Project of National Grand Fundamental Research Pre-973 Program of China under grant no. 2008CB117001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Qi Shi.

Additional information

Liang Bin Hu and Wei Zhou contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, L.B., Zhou, W., Yang, J.D. et al. Cinnamaldehyde Induces PCD-Like Death of Microcystis aeruginosa via Reactive Oxygen Species. Water Air Soil Pollut 217, 105–113 (2011). https://doi.org/10.1007/s11270-010-0571-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0571-1

Keywords

Navigation