Skip to main content
Log in

Co-Ion Effect on Cr3+ Sorption by Amberlyst-15(H+)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Cr3+ sorption on strong acid exchanger Amberlyst-15(H+) is studied as a function of time and temperature using CrCl3.6H2O and [Cr4(SO4)5(OH)2] solutions. The rate is found to be governed by a mixed diffusion for both the solutions and faster for Cl1− solution than SO4 2−. The exchange capacities are found to be higher for Cl1− system than SO4 2−. From the rate constant values, the energies of activation are calculated using the well-known Arrhenius equation. Equilibrium data is explained with the help of the Langmuir equation. The Langmuir parameters are also found to be higher for exchange from the chloride solutions. Various thermodynamic parameters (ΔHo, ΔSo, and ΔGo) for Cr3+ exchange on the resin are calculated. The ΔGo values are found to be negative while ΔHo and ΔSo are positive for both the Cr3+/Cl1− and Cr3+/SO4 2− systems. It is suggested that in case of Cl1− solutions, the metal is exchanged as Cr3+, while in case of SO4 2− solutions, the metal exchanging specie is CrSO4 +.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aguado, J., Arsuaga, J. M., Arencibia, A., Lindo, M., & Gascón, V. (2009). Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. Journal of Hazardous Material, 163, 213–221.

    Article  CAS  Google Scholar 

  • Alguacil, F. J., Alonso, M., & Javier, L. (2004). Chromium (III) recovery from waste acid solution by ion exchange processing using Amberlite IR-120 resin: batch and continuous ion exchange modeling. Chemosphere, 57, 789–793.

    Article  CAS  Google Scholar 

  • Awan, M. A., Baig, M. A., Iqbal, J., Aslam, M. R., & Ijaz, N. (2003). Removal of chromium (III) from Tannery wastewater. Journal of Applied Science & Environmental Management, 7, 5–8.

    CAS  Google Scholar 

  • Ayoob, S., Gupta, A. K., Bhakat, P. B., & Bhat, V. T. (2008). Investigation on the kinetics and mechanisms of sorptive removal of fluoride from water using alumina cement granules. Chemical Engineering Journal, 140, 6–14.

    Article  CAS  Google Scholar 

  • Brykina, G. D., Marchak, T. V., & Krysina, L. S. (1980). Sorption-pho-tometric determination of copper by using AV-17 anion ex-changer modified with l-(2-thiazolyl-azo)-2-naphthol-3, 6-distdphonic acid. Zhurnal Analiticheskoi Khimii, 35, 2294–2299.

    CAS  Google Scholar 

  • Chanda, M., & Rempel, G. L. (1997). Chromium (III) removal by epoxy cross-linked polyethylenimine used as gel-coat on silica. 1. Sorption characteristics. Industrial and Engineering Chemistry Research, 36, 2184–2189.

    Article  CAS  Google Scholar 

  • Dizgea, N., Keskinlera, B., & Barlas, H. (2009). Sorption of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin. Journal of Hazardous Material, 167, 915–926.

    Article  Google Scholar 

  • Gazola, F. C., Pereira, M. R., Barros, M. A. S. D., Silva, E. A., & Arroyo, P. A. (2006). Removal of Cr3+ in fixed bed using zeolite NaY. Chemical Engineering, 117, 253–261.

    Article  CAS  Google Scholar 

  • Gode, F., & Moral, E. (2008). Column study on the adsorption of Cr(III) and Cr(VI) using Pumice, Yarýkkaya brown coal, Chelex-100 and Lewatit MP 62. Bioresource Technology, 99, 1981–1991.

    Article  CAS  Google Scholar 

  • Gode, F., & Pehlivan, E. (2003). A comparative study of two chelating exchange ion exchange resins for the removal of chromium (III) from aqueous solution. Journal of Hazardous Material, 100, 231–243.

    Article  CAS  Google Scholar 

  • Gode, F., & Pehlivan, E. (2006). Removal of Cr(III) from aqueous solutions using Lewatit S 100: The effect of pH, time, metal concentration and temperature. Journal of Hazardous Material, 136, 330–337.

    Article  CAS  Google Scholar 

  • Gupta, V. K., & Rastogi, A. (2008a). Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies. Journal of Hazardous Material, 152, 407–414.

    Article  CAS  Google Scholar 

  • Gupta, V. K., & Rastogi, A. (2008b). Equilibrium and kinetic modeling of cadmium(II) biosorption by non-living algal biomass Oedogonium sp. from aqueous phase. Journal of Hazardous Material, 153, 759–766.

    Article  CAS  Google Scholar 

  • Gupta, V. K., & Rastogi, A. (2008c). Sorption and desorption studies of chromium (VI) from nonviable cyanobacterium Nostoc muscorum biomass. Journal of Hazardous Material, 154, 347–354.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Saini, V. K., & Jain, N. (2005). Adsorption of As (III) from aqueous solutions by iron–oxide-coated sand. Journal of Colloid and Interface Science, 288, 55–60.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Rastogi, A., Saini, V. K., & Jain, N. (2006). Biosorption of copper (II) from aqueous solutions by Spirogyra species. Journal of Colloid and Interface Science, 296, 59–63.

    Article  CAS  Google Scholar 

  • Helfferich, F. (1962). Ion exchange. New York, USA: McGraw-Hill Book Co-education Inc.

    Google Scholar 

  • Janin, A., Zaviska, F., Drogui, P., Blais, J. F., & Mercier, G. (2009). Selective recovery of metals in leachate from chromated copper arsenate treated wastes using electrochemical technology and chemical precipitation. Hydrometallurgy, 96, 318–326.

    Article  CAS  Google Scholar 

  • Kang, S. Y., Lee, U., Moon, S. H., & Kim, K. W. (2004). Competitive adsorption characteristics of Co2+, Ni2+ and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater. Chemosphere, 56, 141–147.

    Article  CAS  Google Scholar 

  • Kocaoba, S., & Akcin, G. (2002). Removal and recovery of Cr and Cr speciation with MINTEQA2. Talanta, 57, 23–30.

    Article  CAS  Google Scholar 

  • Kocaoba, S., & Akcin, G. (2003). A kinetic investigation of chromium. Adsorption, 9, 143–151.

    Article  CAS  Google Scholar 

  • Kocaoba, S., & Akcin, G. (2005). Removal of chromium (III) and cadmium (II) from aqueous solutions. Desalination, 180, 151–156.

    Article  CAS  Google Scholar 

  • Li, C. W., Chen, Y. M., & Hsiao, S. T. (2008). Compressed air-assisted solvent extraction (CASX) for metal removal. Chemosphere, 71, 51–58.

    Article  CAS  Google Scholar 

  • Lyubchiket, S. I., Lyubchiket, A. I., Galushko, O. L., Tikhonova, L. P., Vital, J., Fonseca, I. M., et al. (2004). Kinetics and thermodynamics of ht e Cr(III) adsorption on the activated carbon form co-mingled wastes. Colloids and Surfaces. A, Physiochemical and Engineering Aspects, 242, 151–158.

    Article  Google Scholar 

  • Mohan, D., Singh, K. P., & Singh, V. K. (2006). Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated fabric cloth. Journal of Hazardous Materials, 135, 280–295.

    Article  CAS  Google Scholar 

  • Mustafa, S., Khalid, M., Naeem, A., Rehana, A. N., & Murtaza, S. (2002). Selective removal of chromates by macroporous exchanger Amberlyst A-21. Environmental Technology, 23, 583–590.

    Article  CAS  Google Scholar 

  • Mustafa, S., Shah, K. H., Naeem, A., Waseem, M., & Tahir, M. (2008). Chromium (III) removal by weak acid exchanger Amberlite IRC-50 (Na). Journal of Hazardous Materials, 160, 1–5.

    Article  CAS  Google Scholar 

  • Pettine, M., & Millero, F. J. (1990). Chromium speciation in seawater: the probable role of hydrogen peroxide. Limnology and Oceanology, 35, 730–736.

    Article  CAS  Google Scholar 

  • Reichenberg, D. (1953). Properties of ion-exchange resins in relation to their structure. III. Kinetics of exchange. Journal of American Chemical Society, 75, 589–597.

    Article  CAS  Google Scholar 

  • Rengaraj, S., Yeon, K. H., Kang, S. Y., Lee, J. U., Kim, K. W., & Moon, S. H. (2002). Studies on adsorption removal of Co(II), Cr(III) and Ni(II) by cation exchange resin. Journal of Hazardous Materials, 92, 185–198.

    Article  CAS  Google Scholar 

  • Sakai, H., Matsuoka, S., Zinchenko, A. A., & Murata, S. (2009). Removal of heavy metal ions from aqueous solutions by complexation with cationic surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 347, 210–214.

    Article  CAS  Google Scholar 

  • Shah, B. A., Shah, A. V., & Singh, R. R. (2009). Sorption isotherms and kinetics of chromium uptake from wastewater using natural sorbent material. Journal of Environmental Science & Technology, 6, 77–90.

    CAS  Google Scholar 

  • Sheckal, K. G., & Sparks, D. L. (2001). Temperature effects on nickel sorption kinetics at the mineral–water interface. Soil Science Society America Journal, 65, 719–728.

    Article  Google Scholar 

  • Tadesse, I., Isoaho, S. A., Green, F. B., & Puhakkam, J. A. (2006). Lime enhanced chromium removal in advanced integrated wastewater pond system. Bioresource Technology, 4, 529–534.

    Article  Google Scholar 

  • Wen, B., Shan, X. Q., & Lian, J. (2002). Separation of Cr(III) and Cr(VI) in river and reservoir water with 8- hydroxyquinoline fiber for determination by inductively coupled plasma mass spectrometery immobilized polyacrylonitrile. Talanta, 56, 681–687.

    Article  CAS  Google Scholar 

  • Xuejiang, W., Ling, C., Siqing, X., Jjianfu, Z., Chovelon, J. M., & Renault, N. J. (2006). Biosorption of Cu(II) and Pb(II) from aqueous solutions by dried activated sludge. Mineral Engineering, 19, 968–971.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Mustafa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mustafa, S., Shah, K.H., Naeem, A. et al. Co-Ion Effect on Cr3+ Sorption by Amberlyst-15(H+). Water Air Soil Pollut 217, 57–65 (2011). https://doi.org/10.1007/s11270-010-0567-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0567-x

Keywords

Navigation