Skip to main content

Advertisement

Log in

The Development of a Regional Multimetric Fish Model Based on Biological Integrity in Lotic Ecosystems and Some Factors Influencing the Stream Health

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The objective of this study was to develop an index of biological integrity (IBI) for national-level monitoring of watersheds as an ecosystem health assessment methodology for the South Korean government. A 10-metric IBI model (IBIKW) was developed for watershed management and then applied to 76 streams in four major watersheds in Korea. The model assessments showed that 32.9% of all streams were judged to be in ‘excellent–good’ condition, whereas 67.1% were in ‘fair–poor’ condition, indicating severely impaired ecological health. Nutrient analyses of stream water revealed a two- to fivefold increase in nutrient and biological oxygen demand (BOD) levels in urban- and cropland-dominant streams compared to forest-dominant streams. The guild structure within the watersheds indicated that tolerant species were predominant in severely degraded regions (BOD > 6 mg L−1), and sensitive species were distributed in regions with BOD < 2 mg L−1. Factors affecting ecosystem health (IBIKW scores) included chemical water quality parameters, physical habitat parameters and land use around the stream. In particular, land use was one of the major factors influencing ecosystem health, as indicated by the strong relationships between the percentages of urban and forest streams and the IBIKW scores. The integrated ecosystem health assessment technique developed here can be applied for both regular bioassessments and post-restoration assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adams, S. M., Greeley, M. S., & Ryon, M. G. (2000). Evaluating effects of contaminants on fish health at multiple levels of biological organization: Extrapolating from lower to higher levels. Human & Ecological Risk Assessment, 6, 15–27.

    Article  CAS  Google Scholar 

  • Allan, J. D., Erickson, D. L., & Fay, J. (1997). The influence of catchment land use on stream integrity across multiple scales. Freshwater Biology, 37, 149–161.

    Article  Google Scholar 

  • An, K.-G., Jung, S.-H., & Choi, S.-S. (2001). An evaluation on health conditions of Pyong-Chang river using the index of biological integrity (IBI) and qualitative habitat evaluation index (QHEI). Korean Journal of Limnology, 34, 153–165.

    Google Scholar 

  • An, K.-G., Lee, J. Y., Bae, D. Y., Kim, J. H., Hwang, S. J., Won, D. H., et al. (2006). Ecological assessments of aquatic environments using a multimetric model in major nationwide stream watersheds. Journal of Korean Water Quality, 22(5), 796–804.

    Google Scholar 

  • An, K.-G., Lee, J.-Y., Kumar, H. K., Lee, S.-J., Hwang, S.-J., Kim, B.-H., et al. (2010). Control of algal scum using top-down biomanipulation approaches and ecosystem health assessments for efficient reservoir management. Water, Air, and Soil Pollution, 205, 3–24.

    Article  CAS  Google Scholar 

  • APHA. (1985). Standard methods for the examination of water and waste water (16th ed.). New York: American Public Health Association.

    Google Scholar 

  • Barbour, M. T., Gerritsen, J., Snyder, B. D., & Stribling, J. B. (1999). Rapid bioassessment protocols for use in streams and wadeable rivers: Periphyton, benthic macroinvertebrates and fish. EPA 841-B-99-002 (2nd ed.). Washington, DC: US Environmental Protection Agency, Office of Water.

    Google Scholar 

  • Barbour, M. T., Swietlik, W. F., Jackson, S. K., Courtemanch, D. L., Davies, S. P., & Yoder, C. O. (2000). Measuring the attainment of biological integrity in the USA: A critical element of ecological integrity. Hydrobiologia, 422(423), 453–464.

    Article  Google Scholar 

  • Bartholow, J. M. (1989). Stream temperature investigations: field and analytical methods. Instream flow information paper 13. Biological Report 89 (17). Washington, DC: Fish and Wildlife Service, US Department of the Interior.

    Google Scholar 

  • Burcher, C. L., Valett, H. M., & Benfield, E. F. (2007). The land-cover cascade: Relationships coupling land and water. Ecology, 88, 229–242.

    Article  Google Scholar 

  • Cooper, M. J., Uzarski, D. G., Burton, T. M., & Rediske, R. R. (2006). Macroinvertebrate community composition, chemical/physical variables, land use and cover, and vegetation types within a Lake Michigan drowned river mouth wetland. Aquatic Ecosystem Health and Management Society, 9(4), 463–479.

    Article  CAS  Google Scholar 

  • Crumpton, W. G., Isenhart, T. M., & Mitchell, P. D. (1992). Nitrate and organic N analyses with second-derivative spectroscopy. Limnology and Oceanography, 37, 907–913.

    Article  CAS  Google Scholar 

  • Dauwalter, D. C., & Jackson, J. R. (2004). A provisional fish index of biotic integrity for assessing Ouachita Mountain streams in Arkansas, USA. Environmental Monitoring and Assessment, 91, 27–57.

    Article  Google Scholar 

  • Deacon, J. R., Soule, S. A., & Smith, T. E. (2005). Effects of urbanization on stream quality at selected sites in the seacoast region in New Hampshire, 2001–2003. USGS Scientific Investigations Report, 2005-5103.

  • DIN 38410. (1990). Biological–ecological analysis of water (group M); determination of the saprobic index (M2). German standard methods for the examination of water, p. 10. Part 2, waste water and sludge.

  • Dodds, W. K. K., & Welch, E. B. (2000). Establishing nutrient criteria in streams. Journal of the North American Benthological Society, 19(1), 186–196.

    Article  Google Scholar 

  • Fausch, K. D., Karr, J. R., & Yant, P. R. (1984). Regional application of an index of biotic integrity based on stream fish communities. Transactions of the American Fisheries Society, 113, 39–55.

    Article  Google Scholar 

  • Fausch, K. D., Lyons, J., Karr, J. R., & Angermeier, P. L. (1990). Fish communities as indicators of environmental degradation. American Fisheries Society Symposium, 8, 123–144.

    Google Scholar 

  • Ganasan, V., & Hughes, R. M. (1998). Application of index of biological integrity (IBI) to fish assemblages of the rivers Khan and Kshipra (Madhya Pradesh), India. Freshwater Biology, 40, 12–18.

    Article  Google Scholar 

  • Hamilton, K., & Bergersen, E. P. (1984). Methods to estimate aquatic habitat variables. Environmental evaluation project no. DPTS-35-9. Denver: Bureau of Reclamation, Denver Federal Center.

    Google Scholar 

  • Hughes, R. M., & Oberdorff, T. (1999). Applications of IBI concepts and metrics to waters outside the United States and Canada. In T. P. Simon (Ed.), Assessing the sustainability and biological integrity of water resources using fish assemblages (pp. 79–93). Boca Raton: Lewis.

    Google Scholar 

  • Hughes, R. M., Heiskary, S. A., Mathews, W. J., & Yoder, C. O. (1994). Use of ecoregions in biological monitoring. In S. L. Loeb & A. Spacie (Eds.), Biological monitoring of aquatic systems (pp. 125–151). Chelsea: Lewis.

    Google Scholar 

  • Hugueny, B. S., Camara, B., Samoura, B., & Magassouba, M. (1996). Applying an index of biotic integrity based on communities in a West African river. Hydrobiologia, 331, 71–78.

    Article  Google Scholar 

  • Judy, R. D., Seeley, P. N., Jr., Murray, T. M., Svirsky, S. C., Whitworth, M. R., & Ischinger, L. S. (1984). National fisheries survey, vol. 1. Technical report: initial findings. FWS/OBS-84/06. Washington, DC: US Fish and Wildlife Service.

    Google Scholar 

  • Kamdem-Toham, A., & Teugels, G. G. (1999). First data on an index of biotic integrity (IBI) based on fish assemblages for the assessment of the impact of deforestation in a tropical West African system. Hydrobiologia, 397, 29–38.

    Article  Google Scholar 

  • Karr, J. R. (1981). Assessments of biotic integrity using fish communities. Fisheries, 6, 21–27.

    Article  Google Scholar 

  • Karr, J. R. (1991). Biological integrity: A long-neglected aspect of water resource management. Ecological Applications, 1, 66–84.

    Article  Google Scholar 

  • Karr, J. R. (1999). Defining and measuring river health. Freshwater Biology, 41, 221–234.

    Article  Google Scholar 

  • Karr, J. R., & Chu, E. W. (1999). Restoring life in running waters: Better biological monitoring. Washington, DC: Island Press.

    Google Scholar 

  • Karr, J. R., & Chu, E. W. (2000). Sustaining living rivers. Hydrobiologia, 422(423), 1–14.

    Article  Google Scholar 

  • Karr, J. R., & Dionne, M. (1991). Designing surveys to assess biological integrity in lakes and reservoirs, in biological criteria. In Research and regulation—proceedings of a symposium, EPA-440/5-91-005 (pp. 62–72). Washington, DC: US EPA, Office of Waters.

  • Karr, J. R., Fausch, K. D., Angermeier, P. L., Yant, P. R., & Schlosser, I. J. (1986). Assessing biological integrity in running water: A method and its rationale. Special publication 5. Champaign: Illinois National History Survey.

    Google Scholar 

  • Kelly, M. G., & Whitton, B. A. (1995). The trophic diatom index: A new index for monitoring eutrophication in rivers. Journal of Applied Phycology, 7, 433–444.

    Article  Google Scholar 

  • Kelly, M. G., Cazaubon, A., Coring, E., Dell’Uomo, A., Ector, L., Goldsmith, B., et al. (1998). Recommendations for the routine sampling of diatoms for water quality assessments in Europe. Journal of Phycology, 10, 215–224.

    Article  Google Scholar 

  • Kim, I. S. (1997). Illustrated encyclopedia of fauna and flora of Korea. Freshwater fishes (Vol. 37, pp. 1–629). Seoul: Ministry of Education.

    Google Scholar 

  • Kim, I. S., & Park, J. Y. (2002). Freshwater fishes of Korea. Seoul: KyoHak.

    Google Scholar 

  • Kleynhans, C. J. (1999). The development of a fish index to assess the biological integrity of South African rivers. Water SA, 25(3), 265–278.

    Google Scholar 

  • Koizumi, N., & Matsumiya, Y. (1997). Assessment of stream fish habitat based on index of biotic integrity. Bulletin of Japanese Society of Fisheries Oceanography, 61, 144–156.

    Google Scholar 

  • Lafferty, B. (1987). A procedure for evaluating buffer strips for stream temperature protection under the Forest Practices Act. In: Managing Oregon’s riparian zone for timber, fish, and wildlife. Technical bulletin, vol. 514 (pp. 70–77). New York: National Council for Air and Stream Improvement.

  • Lang, C., & Reymond, O. (1995). An improved index of environmental quality for Swiss rivers based on benthic invertebrates. Aquatic Sciences, 57(2), 172–180.

    Article  Google Scholar 

  • Lang, C., l’Eplattenier, G., & Reymond, O. (1989). Water quality in rivers of Western Switzerland: Application of an adaptable index based on benthic invertebrates. Aquatic Sciences, 51(3), 224–234.

    Article  Google Scholar 

  • Legendre, P., & Legendre, L. (1998). Numerical ecology (developments in environmental modelling) (2 Englishth ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Lyons, J., Navarro-Perez, S., Cochran, P. A., Santana, E., & Guzman-Arroyo, M. (1995). Index of biotic integrity based on fish assemblages for the conservation of streams and rivers in west-central Mexico. Conservation Biology, 9, 569–584.

    Article  Google Scholar 

  • Lyons, J., Gutierrez-Hernandez, A., Diaz-Pardo, E., Soto-Galera, E., Medina-Nava, M., & Pineda-Lopez, R. (2000). Development of a preliminary index of biotic integrity (IBI) based on fish assemblages to assess ecosystem condition in the lakes of central Mexico. Hydrobiologia, 418, 57–72.

    Article  Google Scholar 

  • Maezono, Y., & Miyashita, T. (2004). Impact of exotic fish removal on native communities in farm ponds. Ecological Research, 19, 263–267.

    Article  Google Scholar 

  • McCune, B., & Mefford, M. J. (1999). PC-ORD. Multivariate analysis of ecological data. Version 4.0. Gleneden Beach: MjM Software.

    Google Scholar 

  • Morris, C. C., Stewart, P. M., & Simon, T. P. (2007). Development of an index of biotic integrity for a southeastern coastal plain watershed, USA. Journal of the American Water Resources Association, 43(2), 295–307.

    Article  Google Scholar 

  • Nelson, J. S. (1994). Fishes of the world (3rd ed.). New York: Wiley.

    Google Scholar 

  • Ohio EPA. (1987). Biological criteria for the protection of aquatic life. Users manual for biological field assessment of Ohio surface waters, vol. II. Columbus: Ohio Division of Water Quality Monitoring and Assessment, Surface Water Section.

    Google Scholar 

  • Ohio, E. P. A. (1989). Biological criteria for the protection of aquatic life, Vol. III. Standardized biological field sampling and laboratory method for assessing fish and macroinvertebrate communities. Columbus: Ohio EPA Division of Water Quality Monitoring and Assessment, Surface Water Section.

    Google Scholar 

  • Plafkin, J. L., Barbour, M. T., Porter, K. D., Gross, S. K., & Hughes, R. M. (1989). Rapid assessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. EPA/444/4-89-001. Washington, DC: US Environmental Protection Agency, Office of Water Regulations and Standards.

    Google Scholar 

  • Prepas, E. E., & Rigler, F. A. (1982). Improvements in qualifying the phosphorus concentration in lake water. Canadian Journal of Fisheries and Aquatic Sciences, 39, 822–829.

    CAS  Google Scholar 

  • Pyron, M., Lauer, T. E., LeBlanc, D., Weitzel, D., & Gammon, J. R. (2008). Temporal and spatial variation in an index of biological integrity for the middle Wabash River, Indiana. Hydrobiologia, 600, 205–214.

    Article  Google Scholar 

  • Rankin, E. T., & Yoder, C. O. (1999). Adjustments to the index of biotic integrity: a summary of Ohio experiences and some suggested modifications. In T. P. Simon (Ed.), Assessing the sustainability and biological integrity of water resources using fish communities. Boca Raton: CRC.

    Google Scholar 

  • Rossano, E. M. (1996). Diagnosis of stream environments with index of biological integrity. Tokyo: Sankaido.

    Google Scholar 

  • Sanders, R. E., Milter, R. J., Yoder, C. O., & Rankin, E. T. (1999). The use of external deformities, erosion, lesions, and tumors (DELT anomalies) in fish assemblages for characterizing aquatic resources: a case study of seven Ohio streams. In T. P. Simon (Ed.), Assessing the sustainability and biological integrity of water resources using fish communities (pp. 225–245). Boca Raton: CRC.

    Google Scholar 

  • Simon, T. P. (2003). Biological response signatures: Indicator patterns using aquatic communities. Boca Raton: CRC.

    Google Scholar 

  • Soto-Galera, E., Díaz-Pardo, E., López-López, E., & Lyons, J. (1998). Fish indicator of environmental quality in the Río Lerna Basin, México. Aquatic Ecosystem Health & Management, 1, 267–276.

    Article  Google Scholar 

  • SPSS. (2004). SPSS 12.0 KO for Windows. Atlanta: Apache Software Foundation.

    Google Scholar 

  • Steedman, R. J. (1988). Modification and assessment of an index of biotic integrity to quantify stream quality in southern Ontario. Canadian Journal of Fisheries and Aquatic Sciences, 45, 492–501.

    Article  Google Scholar 

  • Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. American Geophysical Union Transactions, 38, 913–920.

    Google Scholar 

  • ter Braak, C. J. F. (1987). The analysis of vegetation–environment relationships by canonical correspondence analysis. Vegetatio, 69, 69–77.

    Article  Google Scholar 

  • Tong, S. T. Y. (2001). An integrated exploratory approach to examining the relationships of environmental stressors and fish responses. Journal of Aquatic Ecosystem Stress and Recovery, 9, 1–19.

    Article  Google Scholar 

  • US, E. P. A. (1983). Technical support manual: Waterbody surveys and assessment for conducting use attainability analyses. Washington, DC: US EPA Office of Water Regulations and Standards.

    Google Scholar 

  • US EPA. (1993). Fish field and laboratory methods for evaluating the biological integrity of surface waters. EPA 600-R-92–111. Cincinnati: US Environmental Monitoring Systems Laboratory–Cincinnati, Office of Modeling, Monitoring Systems and Quality Assurance.

    Google Scholar 

  • US EPA. (1994). Environmental monitoring and assessment program: integrated quality assurance project plan for the surface waters resource group. 1994 activities, Rev. 2.00. EPA 600/X-91/080. Las Vegas: US EPA.

    Google Scholar 

  • US EPA. (1999). Rapid bioassessment protocols for use in streams and wadeable rivers. EPA 841-B-99-002 (2nd ed.). Washington, DC: US EPA, Office of Water.

    Google Scholar 

  • US EPA. (2002). Biological assessments and criteria. EPA 822-F-02-006. Washington, DC: US EPA, Office of Water.

    Google Scholar 

  • Wang, L., Brenden, T., Seelbach, P., Cooper, A., Allan, D., Clark, R. J., et al. (2008). Landscape based identification of human disturbance gradients and reference conditions for Michigan streams. Environmental Monitoring and Assessment, 141, 1–17.

    Article  Google Scholar 

  • Yoder, C. O., & Rankin, E. T. (1998). The role of biological indicators in a state water quality management process. Environmental Monitoring and Assessment, 51, 61–88.

    Article  CAS  Google Scholar 

  • Zhu, D., & Chang, J. (2008). Annual variations of biotic integrity in the upper Yangtze River using an adapted index of biotic integrity (IBI). Ecological Indicators, 8, 564–572.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Guk An.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, JW., Kumar, H.K., Han, JH. et al. The Development of a Regional Multimetric Fish Model Based on Biological Integrity in Lotic Ecosystems and Some Factors Influencing the Stream Health. Water Air Soil Pollut 217, 3–24 (2011). https://doi.org/10.1007/s11270-010-0563-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0563-1

Keywords

Navigation