Heavy Metal Concentration Survey in Soils and Plants of the Les Malines Mining District (Southern France): Implications for Soil Restoration

Abstract

Mining activities generate spoils and effluents with extremely high metal concentrations of heavy metals that might have adverse effects on ecosystems and human health. Therefore, information on soil and plant metal concentrations is needed to assess the severity of the pollution and develop a strategy for soil reclamation such as phytoremediation. Here, we studied soils and vegetation in three heavily contaminated sites with potential toxic metals and metalloids (Zn, Pb, Cd, As, TI) in the mining district of Les Malines in the Languedoc region (southern France). Extremely high concentrations were found at different places such as the Les Aviniéres tailing basins (up to 160,000 mg kg–1 Zn, 90,000 mg kg–1 Pb, 9,700 mg kg–1 of As and 245 mg kg–1 of Tl) near a former furnace. Metal contamination extended several kilometres away from the mine sites probably because of the transport of toxic mining residues by wind and water. Spontaneous vegetation growing on the three mine sites was highly diversified and included 116 plant species. The vegetation cover consisted of species also found in non-contaminated soils, some of which have been shown to be metal-tolerant ecotypes (Festuca arvernensis, Koeleria vallesiana and Armeria arenaria) and several Zn, Cd and Tl hyperaccumulators such as Anthyllis vulneraria, Thlaspi caerulescens, Iberis intermedia and Silene latifolia. This latter species was highlighted as a new thallium hyperaccumulator, accumulating nearly 1,500 mg kg–1. These species represent a patrimonial interest for their potential use for the phytoremediation of toxic metal-polluted areas.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. 1.

    For ease and convenience, both metals and metalloids are hereafter referred to as metals.

References

  1. AFNOR. (1996). Qualité des sols. Recueil de normes françaises. Paris: AFNOR.

    Google Scholar 

  2. Amphoux, G., & Laroche, D. (1989). La mine des Malines. Paysage-Actualités, 122, 115–121.

    Google Scholar 

  3. Antonovics, J., Bradshaw, A. D., & Turner, R. G. (1971). Heavy metal tolerance in plants. Advances in Ecological Research, 7, 1–85.

    Article  Google Scholar 

  4. Assuncao, A. G. L., Bookum, W. M., Nelissen, H. J. M., Vooijs, R., Schat, H., & Ernst, W. H. O. (2003). Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. The New Phytologist, 159, 411–419.

    CAS  Article  Google Scholar 

  5. Audry, S., Blanc, G., & Schafer, J. (2004). Cadmium transport in the Lot-Garonne River system (France) – temporal variability and a model for flux estimation. The Science of the Total Environment, 319, 197–213.

    CAS  Article  Google Scholar 

  6. Bailly-Maître, M. C. (1997). La mine au Moyen Age. La gestion de l'espace souterrain, Mélange Cl. Domergue. Pallas, 46, 287–295.

    Google Scholar 

  7. Baize, D. (1997). Teneurs totales en éléments traces métalliques dans les sols (France). Références et stratégies d'interprétation (p. 410 p). Paris: INRA Éditions.

    Google Scholar 

  8. Baker, A. J. M., & Walker, P. L. (1990). Ecophysiology of metal uptake by tolerant plants. In A. J. Shaw (Ed.), Heavy metal tolerance in plants: evolutionary aspects (pp. 155–177). Boca Raton: CRC Press.

    Google Scholar 

  9. Baker, A. J. M., McGrath, S. P., Reeves, R. D., & Smith, J. A. C. (2000). Metal hyperaccumulator plants: a review of the ecology and physiology of a biochemical resource for phytoremediation of metal-polluted soils. In N. Terry & G. Bañuelos (Eds.), Phytoremediation of Contaminated Soil and Water (pp. 85–107). Boca Raton: Lewis Publishers.

    Google Scholar 

  10. Balabane, M., Faivre, D., van Oort, F., & Dahmani-Muller, H. (1999). Mutual effects of organic matter dynamics and heavy metal fate in a metallophyte grassland. Environmental Pollution, 105, 45–54.

    CAS  Article  Google Scholar 

  11. Bert, V., MacNair, M. R., DeLaguerie, P., SaumitouLaprade, P., & Petit, D. (2000). Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae). The New Phytologist, 146, 225–233.

    CAS  Article  Google Scholar 

  12. Beyer, W. N. (1988). Damage to the forest ecosystem on Blue Mountain from zinc smelting. Trace Substances in Environmental Health, 22, 249–262.

    Google Scholar 

  13. Bouladon, J. (1977). Les gisements de plomb-zinc-argent du Massif Central. Bulletin du BRGM, Section II, 67–90.

  14. Bradshaw, A. D., & Chadwick, M. J. (1980). The restoration of land (p. 317). Oxford: Blackwell.

    Google Scholar 

  15. Brown, S. L., Chaney, R. L., Angle, J. S., & Baker, A. J. M. (1995). Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Science Society of America Journal, 59, 125.

    CAS  Article  Google Scholar 

  16. Cicchelero, V. (2006) Dépistage du saturnisme dans la commune de Saint-Laurent-le-Minier (Gard), mai 2005. Unpublished report with the participation of: Institut de Veille Sanitaire, Cellule interrégionale d'épidémiologie Languedoc-Roussillon, Préfecture de Région de Midi Pyrénées, Direction Départementale des Affaires Sanitaires et Sociales de Gard.

  17. Cottenie, A., Verloo, M., Kiekens, L., Velghe, G., Camerlynck, R. (1982). Chemical analysis of plants and soils. Laboratory of analytical and agrochemistry, State University Ghent, Belgium. p.63

  18. Cunningham, S. D., & Berti, W. R. (2000). Phytoextraction and phytostabilization: technical, economic, and regulatory considerations of the soil-lead issue. In N. Terry & G. Bañuelos (Eds.), Phytoremediation of Contaminated Soil and Water (pp. 359–376). Boca Raton: Lewis Publishers.

    Google Scholar 

  19. Dahmani-Muller, H., van Oort, F., Gelie, B., & Balabane, M. (2000). Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environmental Pollution, 109, 231–238.

    CAS  Article  Google Scholar 

  20. De Cáceres, M., Font, X., García, R., Oliva, F. (2003). Vegana, un paquete de programas para la gestión y análisis de datos ecológicos. VII Congreso Nacional de la Asociación Española de Ecología Terrestre. Barcelona, Spain. pp. 1481–1497

  21. Dère, C., Lamy, I., van Oort, F., Baize, D., & Cornu, S. (2006). Reconstitution des apports en éléments traces métalliques et bilan de leur migration dans un Luvisol sableux soumis à 100 ans d'irrigation massive par des eaux usées brutes. Comptes Rendus Geosciences, 338, 565–573.

    Article  Google Scholar 

  22. Douay, F., Pruvot, C., Roussel, H., Ciesielski, H., Fourrier, H., Proix, N., et al. (2008). Contamination of urban soils in an area of Northern France polluted by dust emissions of two smelters. Water, Air, and Soil Pollution, 188, 247–260.

    CAS  Article  Google Scholar 

  23. Ernst, W. H. O. (1974). Schwermetallvegetation der Erde. Stuttgart: Gustav Fischer Verlag.

    Google Scholar 

  24. Ernst, W. H. O. (1996). Bioavailability of heavy metals and decontamination of soils by plants. Applied Geochemistry, 11, 163–167.

    CAS  Article  Google Scholar 

  25. Escarré, J., Houssard, C., Debussche, M., & Lepart, J. (1983). Evolution de la végétation et du sol après abandon cultural en région méditerranéenne: étude de succession dans la garrigues du Montpelliérais (France). Acta Oecologica, Oecologia Plantarum, 4, 221–239.

    Google Scholar 

  26. Escarré, J., Lefèbvre, C., Gruber, W., Leblanc, M., Lepart, J., Rivière, Y., et al. (2000). Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. The New Phytologist, 145, 429–437.

    Article  Google Scholar 

  27. Fangueiro, D., Bermond, A., Santos, E., Carapuça, H., & Duarte, A. (2005). Kinetic approach to heavy metal mobilization assessment in sediments: choose of kinetic equations and models to achieve maximum information. Talanta, 66, 844–857.

    CAS  Article  Google Scholar 

  28. FAO. (2006). Guidelines for soil profile description (4th ed.). Rome: F.A.O.

    Google Scholar 

  29. Fernandez, C., Labanowski, J., Cambier, P., Jongmans, A. G., & van Oort, F. (2007). Fate of airborne metal pollution in soils as related to agricultural management. 1. Zn and Pb distribution in soil profiles. European Journal of Soil Science, 58, 547–559.

    CAS  Article  Google Scholar 

  30. Freitas, H., Prasad, M. N. V., & Pratas, J. (2004). Analysis of serpentinophytes from north-east of Portugal for trace metal accumulation - relevance to the management of mine environment. Chemosphere, 54, 1625–1642.

    CAS  Article  Google Scholar 

  31. Frérot, H., Lefèbvre, C., Gruber, W., Collin, C., Dos Santos, A., & Escarré, J. (2006). Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant and Soil, 282, 53–65.

    Article  Google Scholar 

  32. Frérot, H., Lefèbvre, C., Petit, C., Collin, C., Dos Santos, A., & Escarré, J. (2005). Zinc tolerance and hyperaccumulation in F-1 and F-2 offspring from intra and interecotype crosses of Thlaspi caerulescens. The New Phytologist, 165, 111–119.

    Google Scholar 

  33. Frérot, H., Lefèbvre, C., Petit, C., Collin, C., DosSantos, A., & Escarre, J. (2009). Adaptation des végétaux aux milieux pollués par des métaux toxiques et phytoremédiation-cas de la région Languedoc-Roussillon. In P. Cambier et al. (Eds.), Contaminations métalliques des agrosystèmes et écosystèmes péri-industriels (pp. 287–298). Versailles: Editions Quae.

    Google Scholar 

  34. Frérot, H., Petit, C., Lefèbvre, C., Gruber, W., Collin, C., & Escarré, J. (2003). Zinc and cadmium accumulation in controlled crosses between metallicolous and nonmetallicolous populations of Thlaspi caerulescens (Brassicaceae). The New Phytologist, 157, 643–648.

    Article  Google Scholar 

  35. Gabler, H. E., & Schneider, J. (2000). Assessment of heavy-metal contamination of floodplain soils due to mining and mineral processing in the Harz Mountains, Germany. Environmental Geology, 39, 774–782.

    CAS  Article  Google Scholar 

  36. Grimalt, J. O., Ferrer, M., & Macpherson, E. (1999). The mine tailing accident in Aznalcollar. The Science of the Total Environment, 242, 3–11.

    CAS  Article  Google Scholar 

  37. Holl, K. D. (2002). Effect of shrubs on tree seedling establishment in an abandoned tropical pasture. Journal of Ecology, 90, 179–187.

    Article  Google Scholar 

  38. Holmgren, G. G. S., Meyer, M. W., Chaney, R. L., & Daniels, R. B. (1993). Cadmium, lead, zinc, copper, and nickel in agricultural soils of the United States of America. Journal of Environmental Quality, 22, 335–348.

    CAS  Article  Google Scholar 

  39. Labanowski, J., Monna, F., Bermond, A., Cambier, P., Fernandez, C., Lamy, I., et al. (2008). Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate. Environmental Pollution, 153, 693–701.

    Article  Google Scholar 

  40. Leach, D., Macquar, J. C., Lagneau, V., Leventhal, J., Emsbo, P., & Premo, W. (2006). Precipitation of lead-zinc ores in the Mississippi Valley-type deposit at Trèves, Cévennes region of southern France. Geofluids, 6, 24–44.

    CAS  Article  Google Scholar 

  41. Leblanc, M., Petit, D., Deram, A., Robinson, B. H., & Brooks, R. R. (1999). The phytomining and environmental significance of hyperaccumulation of thallium by Iberis intermedia from Southern France. Economic Geology And The Bulletin Of The Society Of Economic Geologists, 94, 109–113.

    CAS  Article  Google Scholar 

  42. Lefebvre, C. (1974). Population variation and taxonomy in Armeria-Maritima with special reference to heavy-metal-tolerant populations. The New Phytologist, 73, 209–219.

    Article  Google Scholar 

  43. Lefèbvre, C., & Simon, E. (1979). Plant spacing in open communities from old zinc-lead mines wastes. Oecologia Plantarum, 14, 461–474.

    Google Scholar 

  44. Lefèbvre, C., & Vernet, P. (1990). Microevolutionary processes on contaminated deposits. In A. J. Shaw (Ed.), Heavy metal tolerance in plants: Evolutionary aspects (pp. 285–300). Boca Raton: CRC Press Inc.

    Google Scholar 

  45. Liu, M. Q., Yanai, J. T., Jiang, R. F., Zhang, F., McGrath, S. P., & Zhao, F. J. (2008). Does cadmium play a physiological role in the hyperaccumulator Thlaspi caerulescens? Chemosphere, 71, 1276–1283.

    CAS  Article  Google Scholar 

  46. Lombi, E., Zhao, F. J., McGrath, S. P., Young, S. D., & Sacchi, G. A. (2001). Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. The New Phytologist, 149, 53–60.

    CAS  Article  Google Scholar 

  47. Meerts, P., & Van Isacker, N. (1997). Heavy metal tolerance and accumulation in metallicolous and non-metallicolous populations of Thlaspi caerulescens from continental Europe. Plant Ecology, 133, 221–231.

    Article  Google Scholar 

  48. Ministère de la Santé. (2004). Circulaire DGS/SD7A no 45 du 5 février 2004 relative au contrôle des paramètres plomb, cuivre et nickel dans les eaux destinées à la consommation humaine.

  49. Molitor, M., Dechamps, C., Gruber, W., & Meerts, P. (2005). Thlaspi caerulescens on nonmetalliferous soil in Luxembourg: ecological niche and genetic variation in mineral element composition. The New Phytologist, 165, 503–512.

    Google Scholar 

  50. Noret, N., Meerts, P., Vanhaelen, M., Dos Santos, A., & Escarre, J. (2007). Do metal-rich plants deter herbivores? A field test of the defence hypothesis. Oecologia, 152, 92–100.

    Article  Google Scholar 

  51. Petelet-Giraud, E., Negrel, P., Luck, J. M., & Ben Othman, D. (2004). Dissolved and particulate heavy metals transport in the Herault watershed: constraints of the origin by lead isotopes. Houille Blanche-Revue Internationale De L Eau, 2, 43–48.

    Article  Google Scholar 

  52. Remon, E., Bouchardon, J. L., Cornier, B., Guy, B., Leclerc, J. C., & Faure, O. (2005). Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: Implications in risk assessment and site restoration. Environmental Pollution, 137, 316–323.

    CAS  Article  Google Scholar 

  53. Retana, J., Espelta, J. M., Habrouk, A., Ordonez, J. L., & de Sola Morales, F. (2002). Regeneration patterns of three Mediterranean pines and forest changes after a large wildfire in northeastern Spain. Ecoscience, 9, 89–97.

    Google Scholar 

  54. Robinson, B., Leblanc, M., Petit, D., Brooks, R., Kirkman, J., & Gregg, P. (1998). The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant and Soil, 203, 47–56.

    CAS  Article  Google Scholar 

  55. Robles-Arenas, V. M., Rodriguez, R., Garcia, C., Manteca, J. I., & Candela, L. (2006). Sulphide-mining impacts in the physical environment: Sierra de Cartagena La Union (SE Spain) case study. Environmental Geology, 51, 47–64.

    CAS  Article  Google Scholar 

  56. Rolley, J. P. (2002). La petite histoire du Plomb et du Zinc en Cévennes. Available at: http://www.ensm-ales.fr/~jprolley/Geologie/Pb-Zn.html. Accessed 25 October 2005.

  57. Roosens, N., Verbruggen, N., Meerts, P., Ximenez-Embun, P., & Smith, J. A. C. (2003). Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe. Plant, Cell & Environment, 26, 1657–1672.

    CAS  Article  Google Scholar 

  58. SAS. (2004). SAS-STAT® 9.1 User's guide (pp. 1731–1846). Cary: SAS Institute Inc.

    Google Scholar 

  59. Searcy, K. B., & Mulcahy, D. L. (1985). The parallel expression of metal tolerance in pollen and sporophytes of Silene-Dioica (L) Clairv, Silene-Alba (Mill) Krause and Mimulus-Guttatus Dc. Theoretical and Applied Genetics, 69, 597–602.

    Article  Google Scholar 

  60. Shen, Z. G., Zhao, F. J., & McGrath, S. P. (1997). Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant, Cell & Environment, 20, 898–906.

    CAS  Article  Google Scholar 

  61. Shimwell, D. W., & Laurie, A. E. (1972). Lead and zinc contamination of vegetation in the Southern Pennines. Environmental Pollution, 3, 291–301.

    CAS  Article  Google Scholar 

  62. Simon, E. (1978). Heavy metals in soils, vegetation development and heavy metal tolerance in plant populations from metalliferous areas. The New Phytologist, 81, 175–188.

    CAS  Article  Google Scholar 

  63. Sterckeman, T., Douay, F., Proix, N., Fourrier, H., & Perdrix, E. (2002). Assessment of the contamination of cultivated soils by eighteen trace elements around smelters in the north of France. Water, Air, and Soil Pollution, 135, 173–194.

    CAS  Article  Google Scholar 

  64. Tamm, O. (1922). Eine methode zur Bestimmung der anorganischen Komponenten der gelkomplexen in Boden. Meddelanden fran Statens Skogsförsöksanstalt, 19, 385–404.

    Google Scholar 

  65. Terry, N., & Bañuelos, G. (Eds.). (2000). Phytoremediation of contaminated soil and water (pp. 109–128). Boca Raton, FL: Lewis Publishers.

    Google Scholar 

  66. Tremel, A., Masson, P., Garraud, D., Donard, O. F. X., Baize, D., & Mench, M. (1997). Thallium in French agrosystems. II. Concentration of thallium in field-grown rape and some other plant species. Environmental Pollution, 97, 161–168.

    CAS  Article  Google Scholar 

  67. Tutin, T. G., Burges, N. A., Chater, A. O., Edmondson, J. R., Heywood, V. H., Moore, D. M., et al. (1964). Flora Europaea. Cambridge: Cambridge University Press.

    Google Scholar 

  68. van Oort, F., Dahmani-Muller, H., Balabane, M., Denaix, L., Gélie, B. (2000) Etude de trois espèces végétales métallophytes : quantification, localisation et spéciation du Zn, Pb et Cd à différentes échelles. II. Evaluation de la faisabilité d'application à la réhabilitation de sols pollués. Final Report Convention Ademe. INRA No 98 95 005. p. 78

  69. van Oort, F., Thiry, M., Jongmans, A., Bourennane, H., Cambier, P., Lamy, I., et al. (2009). Les pollutions métalliques d'un site industriel et des sols environnants: Distributions hétérogènes des métaux et relations avec l'usage des sols. In P. Cambier, C. Schvartz & F. van Oort (Eds.), Contaminations métalliques des agrosystèmes et écosystèmes péri-industriels. Versailles: Editions Quae. pp. 15–44

  70. Vesk, P. A., & Reichman, S. M. (2009). Hyperaccumulators and herbivores—a Bayesian meta-analysis of feeding choice trials. Journal of Chemical Ecology, 35, 289–296.

    CAS  Article  Google Scholar 

  71. Vidal, C., Chantreuil, C., Berge, O., Mauré, L., Escarré, J., Béna, G., et al. (2009). Mesorhizobium metallidurans sp. nov., a novel metal-resistant symbiont of Anthyllis vulneraria growing on metallicolous soil in Languedoc, France. International Journal of Systematic and Evolutionary Microbiology, 59, 850–855.

    CAS  Article  Google Scholar 

  72. Vincent, M. (2006). Les mines des Cévennes. Histoire des concessions et des chemins de fer miniers. Association Terre Cévenole.

  73. Vitousek, P., D’Antonio, C., Loope, L., Rejmanek, M., & Westbrooks, R. (1997). Introduced species: a significant component of human-caused global change. New Zealand Journal of Ecology, 21, 1–16.

    Google Scholar 

  74. Wali, M. K. (1999). Ecological succession and the rehabilitation of disturbed terrestrial ecosystems. Plant and Soil, 213, 195–220.

    CAS  Article  Google Scholar 

  75. Wiegleb, G., & Felinks, B. (2001). Predictability of early stages of primary succession in post-mining landscapes of Lower Lusatia, Germany. Applied Vegetation Science, 4, 5–18.

    Article  Google Scholar 

  76. Wierzbicka, M., & Pielichowska, M. (2004). Adaptation of Biscutella laevigata L, a metal hyperaccumulator, to growth on a zinc-lead waste heap in southern Poland—I: Differences between waste-heap and mountain populations. Chemosphere, 54, 1663–1674.

    CAS  Article  Google Scholar 

  77. Wierzbicka, M., Szarek-Lukaszewska, G., & Grodzinska, K. (2004). Highly toxic thallium in plants from the vicinity of Olkusz (Poland). Ecotoxicology and Environmental Safety, 59, 84–88.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Guy Delmot for authorising the work at the Les Avinières site and for his kind hospitality. We also thank Perrine Gauthier, Violette Sarda and David Degueldre for their technical assistance and Cécile Grand (Ademe) for her scientific and administrative help. This research was fully supported by a contract with the Agence de l’Environnement et de la Maîtrise de l’Energie (Ademe contract 04.72.C.0037).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jose Escarré.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Escarré, J., Lefèbvre, C., Raboyeau, S. et al. Heavy Metal Concentration Survey in Soils and Plants of the Les Malines Mining District (Southern France): Implications for Soil Restoration. Water Air Soil Pollut 216, 485–504 (2011). https://doi.org/10.1007/s11270-010-0547-1

Download citation

Keywords

  • Soil pollution
  • Hyperaccumulation
  • Phytostabilisation
  • Mine tailings
  • Metal-tolerant species