Advertisement

Water, Air, & Soil Pollution

, Volume 216, Issue 1–4, pp 485–504 | Cite as

Heavy Metal Concentration Survey in Soils and Plants of the Les Malines Mining District (Southern France): Implications for Soil Restoration

  • Jose Escarré
  • Claude Lefèbvre
  • Stephan Raboyeau
  • Anabelle Dossantos
  • Wolf Gruber
  • Jean Claude Cleyet Marel
  • Helene Frérot
  • Nausicaa Noret
  • Stephanie Mahieu
  • Christian Collin
  • Folkert van Oort
Article

Abstract

Mining activities generate spoils and effluents with extremely high metal concentrations of heavy metals that might have adverse effects on ecosystems and human health. Therefore, information on soil and plant metal concentrations is needed to assess the severity of the pollution and develop a strategy for soil reclamation such as phytoremediation. Here, we studied soils and vegetation in three heavily contaminated sites with potential toxic metals and metalloids (Zn, Pb, Cd, As, TI) in the mining district of Les Malines in the Languedoc region (southern France). Extremely high concentrations were found at different places such as the Les Aviniéres tailing basins (up to 160,000 mg kg–1 Zn, 90,000 mg kg–1 Pb, 9,700 mg kg–1 of As and 245 mg kg–1 of Tl) near a former furnace. Metal contamination extended several kilometres away from the mine sites probably because of the transport of toxic mining residues by wind and water. Spontaneous vegetation growing on the three mine sites was highly diversified and included 116 plant species. The vegetation cover consisted of species also found in non-contaminated soils, some of which have been shown to be metal-tolerant ecotypes (Festuca arvernensis, Koeleria vallesiana and Armeria arenaria) and several Zn, Cd and Tl hyperaccumulators such as Anthyllis vulneraria, Thlaspi caerulescens, Iberis intermedia and Silene latifolia. This latter species was highlighted as a new thallium hyperaccumulator, accumulating nearly 1,500 mg kg–1. These species represent a patrimonial interest for their potential use for the phytoremediation of toxic metal-polluted areas.

Keywords

Soil pollution Hyperaccumulation Phytostabilisation Mine tailings Metal-tolerant species 

Notes

Acknowledgements

The authors thank Guy Delmot for authorising the work at the Les Avinières site and for his kind hospitality. We also thank Perrine Gauthier, Violette Sarda and David Degueldre for their technical assistance and Cécile Grand (Ademe) for her scientific and administrative help. This research was fully supported by a contract with the Agence de l’Environnement et de la Maîtrise de l’Energie (Ademe contract 04.72.C.0037).

References

  1. AFNOR. (1996). Qualité des sols. Recueil de normes françaises. Paris: AFNOR.Google Scholar
  2. Amphoux, G., & Laroche, D. (1989). La mine des Malines. Paysage-Actualités, 122, 115–121.Google Scholar
  3. Antonovics, J., Bradshaw, A. D., & Turner, R. G. (1971). Heavy metal tolerance in plants. Advances in Ecological Research, 7, 1–85.CrossRefGoogle Scholar
  4. Assuncao, A. G. L., Bookum, W. M., Nelissen, H. J. M., Vooijs, R., Schat, H., & Ernst, W. H. O. (2003). Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. The New Phytologist, 159, 411–419.CrossRefGoogle Scholar
  5. Audry, S., Blanc, G., & Schafer, J. (2004). Cadmium transport in the Lot-Garonne River system (France) – temporal variability and a model for flux estimation. The Science of the Total Environment, 319, 197–213.CrossRefGoogle Scholar
  6. Bailly-Maître, M. C. (1997). La mine au Moyen Age. La gestion de l'espace souterrain, Mélange Cl. Domergue. Pallas, 46, 287–295.Google Scholar
  7. Baize, D. (1997). Teneurs totales en éléments traces métalliques dans les sols (France). Références et stratégies d'interprétation (p. 410 p). Paris: INRA Éditions.Google Scholar
  8. Baker, A. J. M., & Walker, P. L. (1990). Ecophysiology of metal uptake by tolerant plants. In A. J. Shaw (Ed.), Heavy metal tolerance in plants: evolutionary aspects (pp. 155–177). Boca Raton: CRC Press.Google Scholar
  9. Baker, A. J. M., McGrath, S. P., Reeves, R. D., & Smith, J. A. C. (2000). Metal hyperaccumulator plants: a review of the ecology and physiology of a biochemical resource for phytoremediation of metal-polluted soils. In N. Terry & G. Bañuelos (Eds.), Phytoremediation of Contaminated Soil and Water (pp. 85–107). Boca Raton: Lewis Publishers.Google Scholar
  10. Balabane, M., Faivre, D., van Oort, F., & Dahmani-Muller, H. (1999). Mutual effects of organic matter dynamics and heavy metal fate in a metallophyte grassland. Environmental Pollution, 105, 45–54.CrossRefGoogle Scholar
  11. Bert, V., MacNair, M. R., DeLaguerie, P., SaumitouLaprade, P., & Petit, D. (2000). Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae). The New Phytologist, 146, 225–233.CrossRefGoogle Scholar
  12. Beyer, W. N. (1988). Damage to the forest ecosystem on Blue Mountain from zinc smelting. Trace Substances in Environmental Health, 22, 249–262.Google Scholar
  13. Bouladon, J. (1977). Les gisements de plomb-zinc-argent du Massif Central. Bulletin du BRGM, Section II, 67–90.Google Scholar
  14. Bradshaw, A. D., & Chadwick, M. J. (1980). The restoration of land (p. 317). Oxford: Blackwell.Google Scholar
  15. Brown, S. L., Chaney, R. L., Angle, J. S., & Baker, A. J. M. (1995). Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Science Society of America Journal, 59, 125.CrossRefGoogle Scholar
  16. Cicchelero, V. (2006) Dépistage du saturnisme dans la commune de Saint-Laurent-le-Minier (Gard), mai 2005. Unpublished report with the participation of: Institut de Veille Sanitaire, Cellule interrégionale d'épidémiologie Languedoc-Roussillon, Préfecture de Région de Midi Pyrénées, Direction Départementale des Affaires Sanitaires et Sociales de Gard.Google Scholar
  17. Cottenie, A., Verloo, M., Kiekens, L., Velghe, G., Camerlynck, R. (1982). Chemical analysis of plants and soils. Laboratory of analytical and agrochemistry, State University Ghent, Belgium. p.63 Google Scholar
  18. Cunningham, S. D., & Berti, W. R. (2000). Phytoextraction and phytostabilization: technical, economic, and regulatory considerations of the soil-lead issue. In N. Terry & G. Bañuelos (Eds.), Phytoremediation of Contaminated Soil and Water (pp. 359–376). Boca Raton: Lewis Publishers.Google Scholar
  19. Dahmani-Muller, H., van Oort, F., Gelie, B., & Balabane, M. (2000). Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environmental Pollution, 109, 231–238.CrossRefGoogle Scholar
  20. De Cáceres, M., Font, X., García, R., Oliva, F. (2003). Vegana, un paquete de programas para la gestión y análisis de datos ecológicos. VII Congreso Nacional de la Asociación Española de Ecología Terrestre. Barcelona, Spain. pp. 1481–1497Google Scholar
  21. Dère, C., Lamy, I., van Oort, F., Baize, D., & Cornu, S. (2006). Reconstitution des apports en éléments traces métalliques et bilan de leur migration dans un Luvisol sableux soumis à 100 ans d'irrigation massive par des eaux usées brutes. Comptes Rendus Geosciences, 338, 565–573.CrossRefGoogle Scholar
  22. Douay, F., Pruvot, C., Roussel, H., Ciesielski, H., Fourrier, H., Proix, N., et al. (2008). Contamination of urban soils in an area of Northern France polluted by dust emissions of two smelters. Water, Air, and Soil Pollution, 188, 247–260.CrossRefGoogle Scholar
  23. Ernst, W. H. O. (1974). Schwermetallvegetation der Erde. Stuttgart: Gustav Fischer Verlag.Google Scholar
  24. Ernst, W. H. O. (1996). Bioavailability of heavy metals and decontamination of soils by plants. Applied Geochemistry, 11, 163–167.CrossRefGoogle Scholar
  25. Escarré, J., Houssard, C., Debussche, M., & Lepart, J. (1983). Evolution de la végétation et du sol après abandon cultural en région méditerranéenne: étude de succession dans la garrigues du Montpelliérais (France). Acta Oecologica, Oecologia Plantarum, 4, 221–239.Google Scholar
  26. Escarré, J., Lefèbvre, C., Gruber, W., Leblanc, M., Lepart, J., Rivière, Y., et al. (2000). Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. The New Phytologist, 145, 429–437.CrossRefGoogle Scholar
  27. Fangueiro, D., Bermond, A., Santos, E., Carapuça, H., & Duarte, A. (2005). Kinetic approach to heavy metal mobilization assessment in sediments: choose of kinetic equations and models to achieve maximum information. Talanta, 66, 844–857.CrossRefGoogle Scholar
  28. FAO. (2006). Guidelines for soil profile description (4th ed.). Rome: F.A.O.Google Scholar
  29. Fernandez, C., Labanowski, J., Cambier, P., Jongmans, A. G., & van Oort, F. (2007). Fate of airborne metal pollution in soils as related to agricultural management. 1. Zn and Pb distribution in soil profiles. European Journal of Soil Science, 58, 547–559.CrossRefGoogle Scholar
  30. Freitas, H., Prasad, M. N. V., & Pratas, J. (2004). Analysis of serpentinophytes from north-east of Portugal for trace metal accumulation - relevance to the management of mine environment. Chemosphere, 54, 1625–1642.CrossRefGoogle Scholar
  31. Frérot, H., Lefèbvre, C., Gruber, W., Collin, C., Dos Santos, A., & Escarré, J. (2006). Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant and Soil, 282, 53–65.CrossRefGoogle Scholar
  32. Frérot, H., Lefèbvre, C., Petit, C., Collin, C., Dos Santos, A., & Escarré, J. (2005). Zinc tolerance and hyperaccumulation in F-1 and F-2 offspring from intra and interecotype crosses of Thlaspi caerulescens. The New Phytologist, 165, 111–119.Google Scholar
  33. Frérot, H., Lefèbvre, C., Petit, C., Collin, C., DosSantos, A., & Escarre, J. (2009). Adaptation des végétaux aux milieux pollués par des métaux toxiques et phytoremédiation-cas de la région Languedoc-Roussillon. In P. Cambier et al. (Eds.), Contaminations métalliques des agrosystèmes et écosystèmes péri-industriels (pp. 287–298). Versailles: Editions Quae.Google Scholar
  34. Frérot, H., Petit, C., Lefèbvre, C., Gruber, W., Collin, C., & Escarré, J. (2003). Zinc and cadmium accumulation in controlled crosses between metallicolous and nonmetallicolous populations of Thlaspi caerulescens (Brassicaceae). The New Phytologist, 157, 643–648.CrossRefGoogle Scholar
  35. Gabler, H. E., & Schneider, J. (2000). Assessment of heavy-metal contamination of floodplain soils due to mining and mineral processing in the Harz Mountains, Germany. Environmental Geology, 39, 774–782.CrossRefGoogle Scholar
  36. Grimalt, J. O., Ferrer, M., & Macpherson, E. (1999). The mine tailing accident in Aznalcollar. The Science of the Total Environment, 242, 3–11.CrossRefGoogle Scholar
  37. Holl, K. D. (2002). Effect of shrubs on tree seedling establishment in an abandoned tropical pasture. Journal of Ecology, 90, 179–187.CrossRefGoogle Scholar
  38. Holmgren, G. G. S., Meyer, M. W., Chaney, R. L., & Daniels, R. B. (1993). Cadmium, lead, zinc, copper, and nickel in agricultural soils of the United States of America. Journal of Environmental Quality, 22, 335–348.CrossRefGoogle Scholar
  39. Labanowski, J., Monna, F., Bermond, A., Cambier, P., Fernandez, C., Lamy, I., et al. (2008). Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate. Environmental Pollution, 153, 693–701.CrossRefGoogle Scholar
  40. Leach, D., Macquar, J. C., Lagneau, V., Leventhal, J., Emsbo, P., & Premo, W. (2006). Precipitation of lead-zinc ores in the Mississippi Valley-type deposit at Trèves, Cévennes region of southern France. Geofluids, 6, 24–44.CrossRefGoogle Scholar
  41. Leblanc, M., Petit, D., Deram, A., Robinson, B. H., & Brooks, R. R. (1999). The phytomining and environmental significance of hyperaccumulation of thallium by Iberis intermedia from Southern France. Economic Geology And The Bulletin Of The Society Of Economic Geologists, 94, 109–113.CrossRefGoogle Scholar
  42. Lefebvre, C. (1974). Population variation and taxonomy in Armeria-Maritima with special reference to heavy-metal-tolerant populations. The New Phytologist, 73, 209–219.CrossRefGoogle Scholar
  43. Lefèbvre, C., & Simon, E. (1979). Plant spacing in open communities from old zinc-lead mines wastes. Oecologia Plantarum, 14, 461–474.Google Scholar
  44. Lefèbvre, C., & Vernet, P. (1990). Microevolutionary processes on contaminated deposits. In A. J. Shaw (Ed.), Heavy metal tolerance in plants: Evolutionary aspects (pp. 285–300). Boca Raton: CRC Press Inc.Google Scholar
  45. Liu, M. Q., Yanai, J. T., Jiang, R. F., Zhang, F., McGrath, S. P., & Zhao, F. J. (2008). Does cadmium play a physiological role in the hyperaccumulator Thlaspi caerulescens? Chemosphere, 71, 1276–1283.CrossRefGoogle Scholar
  46. Lombi, E., Zhao, F. J., McGrath, S. P., Young, S. D., & Sacchi, G. A. (2001). Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. The New Phytologist, 149, 53–60.CrossRefGoogle Scholar
  47. Meerts, P., & Van Isacker, N. (1997). Heavy metal tolerance and accumulation in metallicolous and non-metallicolous populations of Thlaspi caerulescens from continental Europe. Plant Ecology, 133, 221–231.CrossRefGoogle Scholar
  48. Ministère de la Santé. (2004). Circulaire DGS/SD7A no 45 du 5 février 2004 relative au contrôle des paramètres plomb, cuivre et nickel dans les eaux destinées à la consommation humaine.Google Scholar
  49. Molitor, M., Dechamps, C., Gruber, W., & Meerts, P. (2005). Thlaspi caerulescens on nonmetalliferous soil in Luxembourg: ecological niche and genetic variation in mineral element composition. The New Phytologist, 165, 503–512.Google Scholar
  50. Noret, N., Meerts, P., Vanhaelen, M., Dos Santos, A., & Escarre, J. (2007). Do metal-rich plants deter herbivores? A field test of the defence hypothesis. Oecologia, 152, 92–100.CrossRefGoogle Scholar
  51. Petelet-Giraud, E., Negrel, P., Luck, J. M., & Ben Othman, D. (2004). Dissolved and particulate heavy metals transport in the Herault watershed: constraints of the origin by lead isotopes. Houille Blanche-Revue Internationale De L Eau, 2, 43–48.CrossRefGoogle Scholar
  52. Remon, E., Bouchardon, J. L., Cornier, B., Guy, B., Leclerc, J. C., & Faure, O. (2005). Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: Implications in risk assessment and site restoration. Environmental Pollution, 137, 316–323.CrossRefGoogle Scholar
  53. Retana, J., Espelta, J. M., Habrouk, A., Ordonez, J. L., & de Sola Morales, F. (2002). Regeneration patterns of three Mediterranean pines and forest changes after a large wildfire in northeastern Spain. Ecoscience, 9, 89–97.Google Scholar
  54. Robinson, B., Leblanc, M., Petit, D., Brooks, R., Kirkman, J., & Gregg, P. (1998). The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant and Soil, 203, 47–56.CrossRefGoogle Scholar
  55. Robles-Arenas, V. M., Rodriguez, R., Garcia, C., Manteca, J. I., & Candela, L. (2006). Sulphide-mining impacts in the physical environment: Sierra de Cartagena La Union (SE Spain) case study. Environmental Geology, 51, 47–64.CrossRefGoogle Scholar
  56. Rolley, J. P. (2002). La petite histoire du Plomb et du Zinc en Cévennes. Available at: http://www.ensm-ales.fr/~jprolley/Geologie/Pb-Zn.html. Accessed 25 October 2005.
  57. Roosens, N., Verbruggen, N., Meerts, P., Ximenez-Embun, P., & Smith, J. A. C. (2003). Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe. Plant, Cell & Environment, 26, 1657–1672.CrossRefGoogle Scholar
  58. SAS. (2004). SAS-STAT® 9.1 User's guide (pp. 1731–1846). Cary: SAS Institute Inc.Google Scholar
  59. Searcy, K. B., & Mulcahy, D. L. (1985). The parallel expression of metal tolerance in pollen and sporophytes of Silene-Dioica (L) Clairv, Silene-Alba (Mill) Krause and Mimulus-Guttatus Dc. Theoretical and Applied Genetics, 69, 597–602.CrossRefGoogle Scholar
  60. Shen, Z. G., Zhao, F. J., & McGrath, S. P. (1997). Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant, Cell & Environment, 20, 898–906.CrossRefGoogle Scholar
  61. Shimwell, D. W., & Laurie, A. E. (1972). Lead and zinc contamination of vegetation in the Southern Pennines. Environmental Pollution, 3, 291–301.CrossRefGoogle Scholar
  62. Simon, E. (1978). Heavy metals in soils, vegetation development and heavy metal tolerance in plant populations from metalliferous areas. The New Phytologist, 81, 175–188.CrossRefGoogle Scholar
  63. Sterckeman, T., Douay, F., Proix, N., Fourrier, H., & Perdrix, E. (2002). Assessment of the contamination of cultivated soils by eighteen trace elements around smelters in the north of France. Water, Air, and Soil Pollution, 135, 173–194.CrossRefGoogle Scholar
  64. Tamm, O. (1922). Eine methode zur Bestimmung der anorganischen Komponenten der gelkomplexen in Boden. Meddelanden fran Statens Skogsförsöksanstalt, 19, 385–404.Google Scholar
  65. Terry, N., & Bañuelos, G. (Eds.). (2000). Phytoremediation of contaminated soil and water (pp. 109–128). Boca Raton, FL: Lewis Publishers.Google Scholar
  66. Tremel, A., Masson, P., Garraud, D., Donard, O. F. X., Baize, D., & Mench, M. (1997). Thallium in French agrosystems. II. Concentration of thallium in field-grown rape and some other plant species. Environmental Pollution, 97, 161–168.CrossRefGoogle Scholar
  67. Tutin, T. G., Burges, N. A., Chater, A. O., Edmondson, J. R., Heywood, V. H., Moore, D. M., et al. (1964). Flora Europaea. Cambridge: Cambridge University Press.Google Scholar
  68. van Oort, F., Dahmani-Muller, H., Balabane, M., Denaix, L., Gélie, B. (2000) Etude de trois espèces végétales métallophytes : quantification, localisation et spéciation du Zn, Pb et Cd à différentes échelles. II. Evaluation de la faisabilité d'application à la réhabilitation de sols pollués. Final Report Convention Ademe. INRA No 98 95 005. p. 78Google Scholar
  69. van Oort, F., Thiry, M., Jongmans, A., Bourennane, H., Cambier, P., Lamy, I., et al. (2009). Les pollutions métalliques d'un site industriel et des sols environnants: Distributions hétérogènes des métaux et relations avec l'usage des sols. In P. Cambier, C. Schvartz & F. van Oort (Eds.), Contaminations métalliques des agrosystèmes et écosystèmes péri-industriels. Versailles: Editions Quae. pp. 15–44Google Scholar
  70. Vesk, P. A., & Reichman, S. M. (2009). Hyperaccumulators and herbivores—a Bayesian meta-analysis of feeding choice trials. Journal of Chemical Ecology, 35, 289–296.CrossRefGoogle Scholar
  71. Vidal, C., Chantreuil, C., Berge, O., Mauré, L., Escarré, J., Béna, G., et al. (2009). Mesorhizobium metallidurans sp. nov., a novel metal-resistant symbiont of Anthyllis vulneraria growing on metallicolous soil in Languedoc, France. International Journal of Systematic and Evolutionary Microbiology, 59, 850–855.CrossRefGoogle Scholar
  72. Vincent, M. (2006). Les mines des Cévennes. Histoire des concessions et des chemins de fer miniers. Association Terre Cévenole.Google Scholar
  73. Vitousek, P., D’Antonio, C., Loope, L., Rejmanek, M., & Westbrooks, R. (1997). Introduced species: a significant component of human-caused global change. New Zealand Journal of Ecology, 21, 1–16.Google Scholar
  74. Wali, M. K. (1999). Ecological succession and the rehabilitation of disturbed terrestrial ecosystems. Plant and Soil, 213, 195–220.CrossRefGoogle Scholar
  75. Wiegleb, G., & Felinks, B. (2001). Predictability of early stages of primary succession in post-mining landscapes of Lower Lusatia, Germany. Applied Vegetation Science, 4, 5–18.CrossRefGoogle Scholar
  76. Wierzbicka, M., & Pielichowska, M. (2004). Adaptation of Biscutella laevigata L, a metal hyperaccumulator, to growth on a zinc-lead waste heap in southern Poland—I: Differences between waste-heap and mountain populations. Chemosphere, 54, 1663–1674.CrossRefGoogle Scholar
  77. Wierzbicka, M., Szarek-Lukaszewska, G., & Grodzinska, K. (2004). Highly toxic thallium in plants from the vicinity of Olkusz (Poland). Ecotoxicology and Environmental Safety, 59, 84–88.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jose Escarré
    • 1
  • Claude Lefèbvre
    • 2
  • Stephan Raboyeau
    • 1
  • Anabelle Dossantos
    • 1
  • Wolf Gruber
    • 2
  • Jean Claude Cleyet Marel
    • 3
  • Helene Frérot
    • 4
  • Nausicaa Noret
    • 2
  • Stephanie Mahieu
    • 3
  • Christian Collin
    • 1
  • Folkert van Oort
    • 5
  1. 1.Centre d’Ecologie Fonctionnelle et Evolutive, UMR CNRS 5175Montpellier Cedex 05France
  2. 2.Laboratoire d’Ecologie végétale et de BiogéochimieUniversité Libre de BruxellesBruxellesBelgium
  3. 3.INRA, USC1242Laboratoire des Symbioses Tropicales et MéditerranéennesMontpellier Cedex 05France
  4. 4.Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8016Villeneuve d’Ascq CedexFrance
  5. 5.INRAUR 251 Physicochimie et Ecotoxicologie des Sols d’Agrosystèmes Contaminés (Pessac), RD-10Versailles CedexFrance

Personalised recommendations