Skip to main content
Log in

Hg, Cu, Pb, Cd, and Zn Accumulation in Macrophytes Growing in Tropical Wetlands

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The concentrations of Hg, Cu, Pb, Cd, and Zn accumulated by regional macrophytes were investigated in three tropical wetlands in Colombia. The studied wetlands presented different degrees of metal contamination. Cu and Zn presented the highest concentrations in sediment. Metal accumulation by plants differed among species, sites, and tissues. Metals accumulated in macrophytes were mostly accumulated in root tissues, suggesting an exclusion strategy for metal tolerance. An exception was Hg, which was accumulated mainly in leaves. The ranges of mean metal concentrations were 0.035–0.953 mg g−1 Hg, 6.5–250.3 mg g−1 Cu, 0.059–0.245 mg g−1 Pb, 0.004–0.066 mg g−1 Cd, and 31.8−363.1 mg g−1 Zn in roots and 0.033–0.888 mg g−1 Hg, 2.2–70.7 mg g−1 Cu, 0.005–0.086 mg g−1 Pb, 0.001–0.03 mg g−1 Cd, and 12.6–140.4 mg g−1 Zn in leaves. The scarce correlations registered between metal concentration in sediment and plant tissues indicate that metal concentrations in plants depend on several factors rather than on sediment concentration only. However, when Cu and Zn sediment concentrations increased, these metal concentrations in tissues also increased in Eichhornia crassipes, Ludwigia helminthorriza, and Polygonum punctatum. These species could be proposed as Cu and Zn phytoremediators. Even though macrophytes are important metal accumulators in wetlands, sediment is the main metal compartment due to the fact that its total mass is greater than the corresponding plant biomass in a given area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aksoy, A., Demirezen, D., & Duman, F. (2005). Bioaccumulation, detection and analyses of heavy metal pollution in Sultan Marsh and its environment. Water, Air and Soil Pollution, 164, 241–255.

    Article  CAS  Google Scholar 

  • APHA. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington: American Public Health Association.

    Google Scholar 

  • Armstrong, W., et al. (1978). Root aeration in the wetland condition. In D. D. Hook & R. M. M. Crawford (Eds.), Plant life in anaerobic environments. Processes in anaerobiosis (pp. 269–298). Michigan: Ann Arbor Science.

    Google Scholar 

  • Banerjee, G., & Sarker, S. (1997). The role of Salvinia rotundifolia in scavenging aquatic Pb(II) pollution: A case study. Bioprocess Engineering, 17, 295–300.

    CAS  Google Scholar 

  • Barko, J. W., Gunnison, D., & Carpenter, S. R. (1991). Sediment interactions with submersed macrophyte growth and community dynamics. Aquatic Botany, 41, 41–65.

    Article  Google Scholar 

  • Beckett, P. H. T., & Davis, R. D. (1977). Upper critical levels of toxic elements in plants. The New Phytologist, 79, 95–106.

    Article  CAS  Google Scholar 

  • Bernard, J. M. (1999). Seasonal growth patterns in wetland plants growing in landfill leachate. In G. Mulamoottil, E. A. McBean, & F. Rovers (Eds.), Constructed wetlands for the treatment of landfill leachates (pp. 223–233). Boca Raton: Lewis.

    Google Scholar 

  • Borkert, C. M., Cox, F. R., & Tucker, M. R. (1998). Zinc and copper toxicity in peanut, soybean, rice and corn in soil mixtures. Communications in Soil Science and Plant Analysis, 29, 2991–3005.

    Article  CAS  Google Scholar 

  • Cardwell, A. J., Hawker, D. W., & Greenway, M. (2002). Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere, 48, 653–663.

    Article  CAS  Google Scholar 

  • Chaney, R. (1993). Zinc phytotoxicity. In A. Robson (Ed.), Zinc in soils and plants (pp. 135–150). Dordercht: Kluwer.

    Google Scholar 

  • Coelho, J. P., Pereira, M. E., Duarte, A. C., & Pardal, M. A. (2009). Contribution of primary producers to mercury trophic transfer in estuarine ecosystems: Possible effects of eutrophication. Marine Pollution Bulletin, 58, 358–365.

    Article  CAS  Google Scholar 

  • Coquery, M., & Welbourn, P. M. (1994). Mercury uptake from contaminated water and sediment by the rooted and submerged aquatic macrophyte Eriocaulon septnagulare. Arch Environ Contamin Toxicol, 26, 335–341.

    Article  CAS  Google Scholar 

  • Demirezen, D., & Aksoy, A. (2004). Accumulation of heavy metals in Typha angustifolia L. and Potamogeton pectinatus L. living in Sultan Marsh (Kayseri, Turkey). Chemosphere, 56, 685–696.

    Article  CAS  Google Scholar 

  • Deng, H., Yea, Z. H., & Wong, M. H. (2004). Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environmental Pollution, 132, 29–40.

    Article  CAS  Google Scholar 

  • Dunbabin, J. S., & Bowmer, K. H. (1992). Potential use of constructed wetlands for treatment of industrial wastewaters containing metals. Science of the Total Environment, 111, 151–168.

    Article  CAS  Google Scholar 

  • Dushenkov, V. P., Kumar, N. B. A., Motto, H., & Raskin, Y. (1995). Rhizofiltration: The use of plants to remove heavy metals from aqueous streams. Environmental Science & Technology, 29, 1239–1245.

    Article  CAS  Google Scholar 

  • Elifantz, H., & Tel-Or, E. (2002). Heavy metal biosorption by plant biomass of the macrophyte Ludwigia stolonifera. Water, Air and Soil Pollution, 141, 207–218.

    Article  CAS  Google Scholar 

  • Ellis, J., Shutes, R., Revitt, D., & Zhang, T. (1994). Use of macrophytes for pollution treatment in urban wetlands. Conservation & Recycling, 11, 1–12.

    Article  Google Scholar 

  • Göthberg, A., Greger, M., Holm, K., & Bengtsson, B. E. (2004). Influence of nutrient levels on uptake and effects of mercury, cadmium and lead in water spinach. Journal of Environmental Quality, 33, 1247–1255.

    Article  Google Scholar 

  • Goulet, R. R., & Pick, F. R. (2001). The effects of cattails (Typha latifolia L.) on concentrations and partitioning of metals in surficial sediments of surface-flow constructed wetlands. Water, Air, and Soil Pollution, 132, 275–291.

    Article  CAS  Google Scholar 

  • Greger, M. (1999). Metal availability and bioconcentration in plants. In M. N. V. Prasad & J. Hagemeyer (Eds.), Heavy metal stress in plants: From molecules to ecosystems (pp. 1–27). Berlin: Springer.

    Google Scholar 

  • Hadad, H. R., Maine, M. A., & Bonetto, C. (2006). Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment. Chemosphere, 63(10), 1744–1753.

    Article  CAS  Google Scholar 

  • Hadad, H., Maine, M. A., Natale, G. S., & Bonetto, C. (2007). The effect of nutrient addition on metal tolerance in Salvinia herzogii. Ecological Engineering, 31, 122–131.

    Article  Google Scholar 

  • Hadad, H. R., Maine, M. A., Pinciroli, M., & Mufarrege, M. M. (2009). Nickel and phosphorous sorption efficiencies, tissue accumulation kinetics and morphological effects on Eichhornia crassipes. Ecotoxicology, 18(5), 504–513.

    Article  CAS  Google Scholar 

  • Jackson, L. J., Kalff, J., & Rasmussen, J. B. (1993). Sediment pH and redox potential affect the bioavailability of Al, Cu, Fe, Mn and Zn to rooted aquatic macrophytes. Canadian Journal of Fisheries and Aquatic Sciences, 50, 143–148.

    Article  CAS  Google Scholar 

  • Jones, L. H., & Jarvis, S. C. (1981). The fate of heavy metals. In D. J. Greenland & M. H. Haye (Eds.), The chemistry of soil process (pp. 593–620). UK: Wiley.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2000). Trace elements in soils and plants. Florida: CRC.

    Book  Google Scholar 

  • Keller, B. E. M., Lajtha, K., & Cristofor, S. (1998). Trace metal concentrations in the sediments and plants of the Danube Delta, Romania. Wetlands, 18, 42–50.

    Article  Google Scholar 

  • Kumar, J. I. N., Soni, H., & Kumar, R. N. (2006). Bimonitoring of selected freshwater macrophytes to assess lake trace element contamination: A case study of Nal Sarovar Bird Sanctuary, Guajarat, India. Journal of Limnology, 65, 9–16.

    Google Scholar 

  • Loneragan, J., & Webb, M. (1993). Interactions between zinc and other nutrients affecting the growth of plants. In A. Robson (Ed.), Zinc in soils and plants (pp. 119–131). Dordercht: Kluwer.

    Google Scholar 

  • Lyon, G. L., Peterson, P. J., & Brooks, R. (1969). Chromium-51 distribution in tissues and extracts of Leptospermum scoparium. Plants and Soil, 29, 225–240.

    Article  Google Scholar 

  • Maine, M. A., Suñé, N. L., & Lagger, S. C. (2004). Chromium bioaccumulation: comparison of the capacity of two floating aquatic macrophytes. Water Research, 38, 1494–1501.

    Article  CAS  Google Scholar 

  • Maine, M. A., Suñé, N., Hadad, H. R., Sánchez, G., & Bonetto, C. (2006). Nutrient and metal removal in a constructed wetland for waste-water treatment from a metallurgic industry. Ecological Engineering, 26, 341–347.

    Article  Google Scholar 

  • Outridge, P. M., & Noller, B. N. (1991). Accumulation of toxic trace elements by freshwater vascular plants. Reviews of Environmental Contamination and Toxicology, 121, 1–63.

    CAS  Google Scholar 

  • Rai, P. K. (2008). Heavy metals in water, sediments and wetland plants in an aquatic ecosystem of tropical industrial region, India. Environmental Monitoring and Assessment, 158, 433–457.

    Article  Google Scholar 

  • Satyakala, G., & Kaiser, J. (1997). Studies on the effect of heavy metal pollution on Pistia stratiotes L. (water lettuce). Indian Journal of Environment, 39, 1–7.

    CAS  Google Scholar 

  • Schneider, I., & Rubio, J. (1999). Sorption of heavy metal ions by the nonliving biomass of freshwater macrophytes. Environmental Science & Technology, 33, 2213–2217.

    Article  CAS  Google Scholar 

  • Singh, B. R., & McLaughlin, M. J. (1996). Cadmium in soils and plants. In B. R. Singh & M. J. McLaughlin (Eds.), Cadmium in soils and plants (pp. 1–7). Dordrecht: Kluwer.

    Google Scholar 

  • Sorrell, B. K., & Boon, P. L. (1992). Biogeochemistry of billabong sediments II. Seasonal variations in methane production. Freshwater Biology, 27, 435–445.

    Article  CAS  Google Scholar 

  • Stoltz, E., & Greger, M. (2002). Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environmental and Experimental Botany, 47, 271–280.

    Article  CAS  Google Scholar 

  • Suñé, N., Maine, M. A., Sánchez, G., & Caffaratti, S. (2007). Cadmium and chromium removal kinetics from solution by two aquatic macrophytes. Environmental Pollution, 145, 467–473.

    Article  Google Scholar 

  • Tang, S., & Fang, Y. (2001). Copper accumulation by Polygonum microcephalum Don and Rumex hastatus Don from copper mining spoils in Yunnan Province, P.R. China. Environmental Geology, 40, 902–907.

    Article  CAS  Google Scholar 

  • Taylor, G. J., & Crowder, A. A. (1983). Uptake and accumulation of copper, nickel, and iron by Typha latifolia grown in solution culture. Canadian Journal of Botany, 61, 1825–1830.

    CAS  Google Scholar 

  • USEPA. (1991a). Method 200.2. Sample preparation procedure for spectrochemical determination of total recoverable elements, revision 2.3. EPA-600/4-91-010. Washington: United States Environmental Protection Agency.

    Google Scholar 

  • USEPA. (1991b). Method 200.3. Sample preparation procedure for spectrochemical determination of total recoverable elements in biological tissues, revision 1.0. EPA-600/4-91-010. Washington: United States Environmental Protection Agency.

    Google Scholar 

  • Vesk, P., & Allaway, W. (1997). Spatial variation of copper and lead concentrations of Eichhornia crassipes plants in a wetland receiving urban run-off. Aquatic Botany, 59, 33–44.

    Article  CAS  Google Scholar 

  • Wei, S., Zhou, Q., Xiao, H., Yang, C., Hu, Y., & Ren, L. (2009). Hyperaccumulative property comparison of 24 weed species to heavy metals using a pot culture experiment. Environmental Monitoring and Assessment, 152, 299–307.

    Article  CAS  Google Scholar 

  • Wolverton, B. C., & McDonald, R. C. (1979). The water hyacinth: From prolific pest to potential provider. Ambio, 8, 2–9.

    Google Scholar 

  • Wright, D. J., & Otte, M. L. (1999). Wetland plant effects on the biogeochemistry of metals beyond the rhizosphere. Biology and Environment: Proceedings of the Royal Irish Academy, 99B, 3–10.

    Google Scholar 

  • Ye, Z. H., Baker, A. J. M., Wong, M. H., & Willis, A. J. (1997). Copper and nickel uptake, accumulation and tolerance in populations of Typha latifolia L. The New Phytologist, 136, 469–480.

    Article  CAS  Google Scholar 

  • Ye, Z. H., Whiting, S. N., Lin, Z. Q., Lytle, C. M., Qian, J. H., & Terry, N. (2001). Removal and distribution of iron, manganese, cobalt and nickel within a Pennsylvania constructed wetland treating coal combustion by-product leachate. Journal of Environmental Quality, 30, 1464–1473.

    Article  CAS  Google Scholar 

  • Yu, X., & Gu, J. D. (2007a). Accumulation and distribution of trivalent chromium and effects on metabolism of the hybrid willow Salix matsudana Koidz × alba L. Archives of Environmental Contamination and Toxicology, 52, 503–511.

    Article  CAS  Google Scholar 

  • Yu, X., & Gu, J. D. (2007b). Metabolic responses of weeping willows to selenate and selenite. Environmental Science and Pollution Research, 14, 510–517.

    Article  CAS  Google Scholar 

  • Yu, X., & Gu, J. D. (2008a). Effect of available nitrogen on phytoavailability and bioaccumualtion of hexavalent and trivalent chromium in hankow willows (Salix matsudana Koidz). Ecotoxicology and Environmental Safety, 70, 216–222.

    Article  CAS  Google Scholar 

  • Yu, X., & Gu, J. D. (2008b). Differences in uptake and translocation of selenate and selenite by weeping willow and hybrid willow. Environmental Science and Pollution Research, 15, 499–508.

    Article  CAS  Google Scholar 

  • Yu, X., Gu, J. D., & Xing, L. Q. (2008). Differences in uptake and translocation of hexavalent and trivalent chromium by two species of willows. Ecotoxicology, 17, 747–755.

    Article  CAS  Google Scholar 

  • Zhang, M., Cui, L., Sheng, L., & Wang, Y. (2009). Distribution and enrichment of heavy metals among sediments, water body and plants in Hengshuihu Wetland of Northern China. Ecological Engineering, 35, 563–569.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Universidad de Córdoba, Montería, Colombia (grant FCB-0906-2007), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina), and Universidad Nacional del Litoral (UNL), Argentina, for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernan R. Hadad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Núñez, S.E.R., Negrete, J.L.M., Rios, J.E.A. et al. Hg, Cu, Pb, Cd, and Zn Accumulation in Macrophytes Growing in Tropical Wetlands. Water Air Soil Pollut 216, 361–373 (2011). https://doi.org/10.1007/s11270-010-0538-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0538-2

Keywords

Navigation