Water, Air, & Soil Pollution

, Volume 216, Issue 1–4, pp 153–166 | Cite as

Evaluation of the Affinity of Some Toxic Elements to Schwertmannite in Natural Streams Contaminated with Acid Mine Drainage

  • Tetsushi NaganoEmail author
  • Nobuyuki Yanase
  • Yukiko Hanzawa
  • Morio Takada
  • Hisayoshi Mitamura
  • Tsutomu Sato
  • Hirochika Naganawa


In order to evaluate fixation potential of schwertmannite for fluvial transport of various toxic elements, we examined bottom precipitates and stream waters collected from the rivers contaminated with acid mine drainage (AMD), which arose from the abandoned Nishinomaki mine (Shimonita, Gunma, Japan). Mineralogical and morphological observations revealed that schwertmannite was the main mineral of the precipitates. The affinity of various toxic ions to schwertmannite was evaluated on the basis of (1) apparent solid–liquid partition coefficients (K d’s) between precipitates and stream waters, (2) coprecipitation behaviors during schwertmannite formation in a laboratory test, and (3) consideration on coprecipitation processes using partial charge model (PCM). As a result, oxyanions of V, As, Mo and Sb, K d’s of which were relatively large (>104 (ml g−1)), were considered to be immobilized by schwertmannite precipitates. A laboratory test also demonstrated that these ions except Mo coprecipitated with schwertmannite. In addition, partial charges and average electronegativities predicted on the basis of PCM suggested that the oxyanions of V, As, Mo, and Sb could create stable inner sphere complexes with schwertmannite embryos, which results in their high affinity to schwertmannite. On the other hand, cationic ions of Mn, Cu, Zn, Sr, Cs, and U, K d’s of which were relatively small (<104 (ml g−1)), were thought to have a tendency to flow downstream without uptake by schwertmannite precipitates. All these results suggested that schwertmannite has high fixation potential for fluvial transport of various toxic oxyanions in AMD-contaminated rivers.


Acid mine drainage Oxyanion Schwertmannite Coprecipitation Partition coefficient Partial charge model 



The authors are greatly indebted to Dr. F. Esaka and Mr. Y. Fukuyama for the technical support of FE-SEM analysis.


  1. Acero, P., Ayora, C., Torrentó, C., & Nieto, J. M. (2006). The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochimica et Cosmochimica Acta, 70, 4130–4139. doi: 10.1016/j.gca.2006.06.1367.CrossRefGoogle Scholar
  2. Barham, R. J. (1997). Schwertmannite: a unique mineral, contains a replaceable ligand, transforms to jarosite, hematites, and/or basic iron sulphate. Journal of Materials Research, 12(10), 2751–2758. doi: 10.1557/JMR.1997.0366.CrossRefGoogle Scholar
  3. Bethke, C. M. (1996). Geochemical reaction modeling. New York: Oxford University Press.Google Scholar
  4. Bigham, J. M., Schwertmann, U., Carlson, L., & Murad, E. (1990). A poorly crystallized oxyhydroxysulphate of iron formed by bacterial oxidation of Fe(II) in acid mine waters. Geochimica et Cosmochimica Acta, 54, 2743–2758. doi: 10.1016/0016-7037(90)90009-A.CrossRefGoogle Scholar
  5. Bigham, J. M., Carlson, L., & Murad, E. (1994). Schwertmannite, a new iron oxyhydroxysulphate from Pyhasalmi, Finland, and other localities. Mineralogical Magazine, 58, 641–648.CrossRefGoogle Scholar
  6. Bigham, J. M., Schwertmann, U., Traina, S. J., Winland, R. L., & Wolf, M. (1996). Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochimica et Cosmochimica Acta, 60, 2111–2121. doi: 10.1016/0016-7037(96)00091-9.CrossRefGoogle Scholar
  7. Bigham, J. M., Schwertmann, U., & Pfab, G. (1996). Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage. Applied Geochemistry, 11, 845–849. doi: 10.1016/S0883-2927(96)00052-2.CrossRefGoogle Scholar
  8. Casiot, C., Ujevic, M., Munoz, M., Seidel, J. L., & Elbaz-Poulichet, F. (2007). Antimony and arsenic mobility in a creek draining an antimony mine abandoned 85 years ago (upper Orb Basin, France). Applied Geochemistry, 22, 788–798. doi: 10.1016/j.apgeochem.2006.11.007.CrossRefGoogle Scholar
  9. Cornell, R. M., & Schwertmann, U. (2003). The iron oxides. Weinheim: Wiley-VHC.CrossRefGoogle Scholar
  10. Cravotta, C. A., III. (2008a). Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 1: constituent quantities and correlations. Applied Geochemistry, 23, 166–202. doi: 10.1016/j.apgeochem.2007.10.011.CrossRefGoogle Scholar
  11. Cravotta, C. A., III. (2008b). Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 2: geochemical controls on constituent concentrations. Applied Geochemistry, 23, 203–226. doi: 10.1016/j.apgeochem.2007.10.003.CrossRefGoogle Scholar
  12. Dzombak, D. A., & Morel, F. M. M. (1990). Surface complexation modeling. New York: Wiley.Google Scholar
  13. Fukushi, K., Sasaki, M., Sato, T., Yanase, N., Amano, H., & Ikeda, H. (2003). A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Applied Geochemistry, 18, 1267–1278. doi: 10.1016/S0883-2927(03)00011-8.CrossRefGoogle Scholar
  14. Fukushi, K., Sato, T., Yanase, N., Minato, J., & Yamada, H. (2004). Arsenic sorption on schwertmannite. American Mineralogist, 89, 1728–1734.Google Scholar
  15. Gagliano, W. B., Brill, M. R., Bigham, J. M., Jones, F. S., & Traina, S. J. (2004). Chemistry and mineralogy of ochreous sediments in a constructed mine drainage wetland. Geochimica et Cosmochimica Acta, 68, 2119–2128. doi: 10.1016/j.gca.2003.10.038.CrossRefGoogle Scholar
  16. Gaikwad, R. W., & Gupta, D. V. (2008). Review on removal of heavy metals from acid mine drainage. Applied Ecology and Environmental Research, 6, 81–98.Google Scholar
  17. Gaillardet, J., Viers, J., & Dupre, B. (2005). Trace elements in river waters. In J. I. Drever (Ed.), Surface and ground water, weathering, and soils, vol. 5 (pp. 225–272). Tokyo: Elsevier.Google Scholar
  18. Goldberg, S., Forster, H. S., & Godfrey, C. L. (1996). Molybdenum adsorption on oxides, clay minerals, and soils. Soil Science Society of America Journal, 60(2), 425–432.CrossRefGoogle Scholar
  19. Inoue, A., & Hatta, T. (2006). Co-precipitation synthesis of schwertmannite and its analogues with different anion species, focusing on understanding of the role of anions in the formation of FeOOH minerals. Journal of the Clay Science Society of Japan, 45(4), 250–265.Google Scholar
  20. Jolivet, J.-P. (2000). Metal oxide chemistry and synthesis. Chichester: Wiley.Google Scholar
  21. Jönsson, J., Persson, P., Sjöberg, S., & Lövgren, L. (2005). Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties. Applied Geochemistry, 20, 179–191. doi: 10.1016/j.apgeochem.2004.04.008.CrossRefGoogle Scholar
  22. Jönsson, J., Jönsson, J., & Lövgren, L. (2006). Precipitation of secondary Fe(III) minerals from acid mine drainage. Applied Geochemistry, 21, 437–445. doi: 10.1016/j.apgeochem.2005.12.008.CrossRefGoogle Scholar
  23. Kawano, M., Obotaka, S., & Tomita, K. (2006). Surface reactive sites and adsorption modeling of schwertmannite. Journal of the Clay Science Society of Japan, 45(4), 223–232.Google Scholar
  24. Leuz, A.-K., Mönch, H., & Johnson, C. A. (2006). Sorption of Sb(III) and Sb(V) to Goethite: influence on Sb(III) oxidation and mobilization. Environmental Science & Technology, 40, 7277–7282. doi: 10.1021/es061284b.CrossRefGoogle Scholar
  25. Livage, J., Henry, M., & Sanchez, C. (1988). Sol-gel chemistry of transition metal oxides. Progress in Solid State Chemistry, 18, 259–341. doi: 10.1016/0079-6786(88)90005-2.CrossRefGoogle Scholar
  26. Manaka, M., Yanase, N., Sato, T., & Fukushi, K. (2007). Natural attenuation of antimony in mine drainage water. Geochemical Journal, 41, 17–27.CrossRefGoogle Scholar
  27. Matsunaga, T., Tsuduki, K., Sanada, Y., Ueno, T., Yanase, N., & Nagaoka, T., (2003). Partitioning of radionuclides in fresh water bodies among solid, colloidal, and aqueous phases in relation to their fluvial transport modeling. In J. Inaba, H. Tsukada, & A. Takeda, (Eds.), Proceedings of the International Symposium on Radioecology and Environmental Dosimetry (pp. 330–335). Aomori: the Institute for Environmental Sciences.Google Scholar
  28. Morillo, J., Usero, J., & Gracia, I. (2002). Partitioning of metals in sediments from the Odiel River (Spain). Environment International, 28, 263–271. doi: 10.1016/S0160-4120(02)00033-8.CrossRefGoogle Scholar
  29. Nagano, T., Yanase, N., Tsuduki, K., & Nagao, S. (2003). Particulate and dissolved elemental loads in the Kuji River related to discharge rate. Environment International, 28, 649–658. doi: 10.1016/S0160-4120(02)00105-8.CrossRefGoogle Scholar
  30. Peacock, C. L., & Sherman, D. M. (2004). Vanadium(V) adsorption onto goethite (α-FeOOH) at pH 1.5 to 12: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy. Geochimica et Cosmochimica Acta, 68, 1723–1733. doi: 10.1016/j.gca.2003.10.018.CrossRefGoogle Scholar
  31. Pichler, T., Veizer, J., & Hall, G. E. M. (1999). Natural input of arsenic into a coral-reef ecosystem by hydrothermal fluids and its removal by Fe(III) oxyhydroxides. Environmental Science & Technology, 33, 1373–1378. doi: 10.1021/es980949+.CrossRefGoogle Scholar
  32. Regenspurg, S., Brand, A., & Peiffer, S. (2004). Formation and stability of schwertmannite in acid mining lake. Geochimica et Cosmochimica Acta, 68, 1185–1197. doi: 10.1016/j.gca.2003.07.015.CrossRefGoogle Scholar
  33. Regenspurg, S., & Peiffer, S. (2005). Arsenate and chromate incorporation in schwertmannite. Applied Geochemistry, 20, 1226–1239. doi: 10.1016/j.apgeochem.2004.12.002.CrossRefGoogle Scholar
  34. Routh, J., & Ikramuddin, M. (1996). Trace-element geochemistry of Onion Creek near Van Stone lead-zinc mine (Washington, USA)—chemical analysis and geochemical modeling. Chemical Geology, 133, 211–224. doi: 10.1016/S0009-2541(96)00091-5.CrossRefGoogle Scholar
  35. Scheinost, A. C., Rossberg, A., Vantelon, D., Xifra, I., Kretzschmar, R., Leuz, A.-K., et al. (2006). Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy. Geochimica et Cosmochimica Acta, 70, 3299–3312. doi: 10.1016/j.gca.2006.03.020.CrossRefGoogle Scholar
  36. Schneider, W. (1984). Hydrolysis of iron (III)—chaotic olation versus nucleation. Comments on Inorganic Chemistry, 3, 205–223. doi: 10.1080/02603598408078138.CrossRefGoogle Scholar
  37. Schneider, W., & Schwyn, B. (1987). The hydrolysis of iron in synthetic, biological, and aquatic media. In W. Stumm (Ed.), Aquatic surface chemistry (pp. 167–196). Toronto: Wiley.Google Scholar
  38. Schroth, A. W., & Parnell, R. A., Jr. (2005). Trace metal retention through the schwertmannite to goethite transformation as observed in a field setting, Alta Mine, MT. Applied Geochemistry, 20, 907–917. doi: 10.1016/j.apgeochem.2004.09.020.CrossRefGoogle Scholar
  39. Schwertmann, U., Bigham, J. M., & Murad, E. (1995). The first occurrence of schwertmannite in a natural stream environment. European Journal of Mineralogy, 7, 547–552.Google Scholar
  40. Siegel, F. R. (2002). Environmental geochemistry of potentially toxic metals. Heidelberg: Springer.Google Scholar
  41. Violante, A., Gaudio, S. D., Pigna, M., Ricciardella, M., & Banerjee, D. (2007). Coprecipitation of arsenate with metal oxides. 2. Nature, mineralogy, and reactivity of iron(III) precipitates. Environmental Science & Technology, 41, 8275–8280. doi: 10.1021/es070382+.CrossRefGoogle Scholar
  42. Waichunas, G. A., Xu, N., Fuller, C. C., Davis, J. A., & Bigham, J. M. (1995). XAS study of AsO43− and SeO42− substituted schwertmannite. Physica B, 208&209, 481–483. doi: 10.1016/0921-4526(94)00730-J.CrossRefGoogle Scholar
  43. Webster, J. G., Swedlund, P. J., & Webster, K. S. (1998). Trace metal adsorption onto an acid mine drainage iron(III) oxy hydroxyl sulfate. Environmental Science & Technology, 32, 1361–1368. doi: 10.1021/es9704390.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Tetsushi Nagano
    • 1
    Email author
  • Nobuyuki Yanase
    • 1
  • Yukiko Hanzawa
    • 1
  • Morio Takada
    • 2
  • Hisayoshi Mitamura
    • 1
  • Tsutomu Sato
    • 2
  • Hirochika Naganawa
    • 1
  1. 1.Nuclear Science and Engineering DirectorateJapan Atomic Energy AgencyTokaiJapan
  2. 2.Laboratory of Environmental Geology, Graduate School of EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations