Water, Air, & Soil Pollution

, Volume 216, Issue 1–4, pp 141–152 | Cite as

Surface Soil Geochemistry for Environmental Assessment in Kavala Area, Northern Greece

  • Georgios PapastergiosEmail author
  • Anestis Filippidis
  • Jose-Luis Fernandez-Turiel
  • Domingo Gimeno
  • Constantinos Sikalidis


The aim of the present study was to estimate the geochemical background and anomaly threshold values of the surface soils in Kavala, northern Greece. In order to reach this goal, a simple and practical procedure was applied. This procedure included the extraction of 42 major and trace elements by analytical grade HNO3 from 65 surface soil samples, analysis by inductively coupled plasma–optical emission spectrometry and inductively coupled plasma–mass spectrometry, the distribution of the elemental data displayed on probability graphs (Q-Q plots), and the visualization of the results spatially by GIS software. The results indicated that natural factors mostly influence the elevated concentrations of Al, Ca, Fe, K, Mg, Si, B, Ba, Ce, Ga, Ge, La, Li, Mn Rb, Sb, Se, Sn, Sr, Y, and Zr, while anthropogenic activities mostly influence the elevated concentrations of Ag, As, Cd, Co, Cr, Cs, Cu, Hg, Mo, Ni, Pb, Th, Ti, U, V, W, and Zn. Nevertheless, almost all the elements determined showed their elevated concentrations inside the industrial part of Kavala area, which implies that the anthropogenic activities taking place in the study area, influence importantly the spatial distribution of the elements. The methodology followed in this research seems to be an adequate alternative for soil environmental studies.


Geochemistry Background Threshold Soil Environmental assessment GIS Greece 



The authors would like to acknowledge the technical assistance provided by the personnel of the Faculty of Geology of the University of Barcelona, the SCT–UB and ICTJA–CSIC, Barcelona (Spain). Georgios Papastergios wishes to thank the support of the Greek State Scholarships Foundation (IKY). This work was partially carried out in the framework of PEGEFA 2005SGR-00795 Research Consolidated Group, funded by AGAUR-DURSI, Generalitat de Catalunya. The constructive comments of an anonymous reviewer are greatly appreciated.


  1. Bölviken, B., Bogen, J., Demetriades, A., De Vos, W., Ebbing, J., Hindel, R., et al. (1996). Regional geochemical mapping of Western Europe towards the year 2000. Journal of Geochemical Exploration, 56, 141–166.CrossRefGoogle Scholar
  2. Chen, M., & Ma, Q. L. (1998). Comparison of four USEPA digestion methods for trace metal analysis using certified and Florida soils. Journal of Environmental Quality, 26, 1294–1300.CrossRefGoogle Scholar
  3. Chen, M., & Ma, Q. L. (2001). Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Science Society of America Journal, 65, 491–499.CrossRefGoogle Scholar
  4. Christanis, K., Georgakopoulos, A., Fernandez-Turiel, J. L., & Bouzinos, A. (1998). Geological factors influencing the concentration of trace elements in the Philippi peatland, eastern Macedonia, Greece. International Journal of Coal Geology, 36, 295–313.CrossRefGoogle Scholar
  5. Christoforidis, A., & Stamatis, N. (2009). Heavy metal contamination in street dust and roadside soil along the major national road in Kavala's region, Greece. Geoderma, 151, 257–263.CrossRefGoogle Scholar
  6. Christofides, G., Soldatos, T., Eleftheriadis, G., & Koroneos, A. (1998). Chemical and isotopic evidence for source contamination and crustal assimilation in the Hellenic Rhodope plutonic rocks. Acta Vulcanologica, 10, 305–318.Google Scholar
  7. Christofides, G., Koroneos, A., Soldatos, T., Eleftheriadis, G., & Kilias, A. (2001). Eocene magmatism (Sithonia and Elatia plutons) in the Internal Hellenides and implications for Eocene-Miocene geological evolution of the Rhodope Massif (Northern Greece). Acta Vulcanologica, 13, 73–89.Google Scholar
  8. Cui, Y. J., Zhai, R. H., Huang, Y. Z., Qiu, Y., & Liang, J. Z. (2005). Exposure to metal mixtures and human health impacts in a contaminated area in Nanning, China. Environment International, 31, 784–790.CrossRefGoogle Scholar
  9. Demetriades, A. (2008). Overbank Sediment sampling in Greece: a contribution to the evaluation of methods for the ‘Global Geochemical Baselines’ mapping project. Geochemistry - Exploration Environment Analysis, 8, 229–239.CrossRefGoogle Scholar
  10. FAO (Food and Agriculture Organisation of the United Nations) (1974) Legend of the soil map of the world, internet link: key to the FAO soil units in the FAO/Unesco soil map of the world. Accessed April 2003
  11. FAO, (Food and Agriculture Organisation of the United Nations) (2003). The digital soil map of the world notes, version 3.6, p. 21.Google Scholar
  12. Fernandez-Turiel, J. L., & Durán-Barrachina, M. E. (1989). A contribution to regional tin exploration in the Iberian Massif. Journal of Geochemical Exploration, 31, 295–305.CrossRefGoogle Scholar
  13. Fernandez-Turiel, J. L., Llorens, J. F., López-Vera, F., Gómez-Artola, C., Morell, I., & Gimeno, D. (2000). Strategy for water analysis using ICP-MS. Fresenius’ Journal of Analytical Chemistry, 368–6, 601–606.CrossRefGoogle Scholar
  14. Fernandez-Turiel, J. L., Aceñolaza, P., Medina, M. E., Llorens, J. F., & Sardi, F. (2001). Assessment of a smelter impact area using surface soils and plants. Environmental Geochemistry and Health, 23, 65–78.CrossRefGoogle Scholar
  15. Filippidis, A., Georgakopoulos, A., Kassoli-Fournaraki, A., Misaelides, P., Yiakkoupis, P., & Broussoulis, J. (1996). Trace element contents in composite samples of three lignite seams from the central part of the Drama lignite deposit, Macedonia, Greece. International Journal of Coal Geology, 29, 219–234.CrossRefGoogle Scholar
  16. Gallego, J. L. R., Ordóñez, A., & Loredo, J. (2002). Investigation of trace element sources from an industrialised area (Avilés, Northern Spain) using multivariate statistical methods. Environment International, 27, 589–596.CrossRefGoogle Scholar
  17. Garret, R. G., Reinmann, C., Smith, D. B., & Xie, X. (2008). From geochemical prospecting to international geochemical mapping: a historical overview. Geochemistry - Exploration Environment Analysis, 8, 205–217.CrossRefGoogle Scholar
  18. Grigoriadou, A., Schwarzbauer, J., & Georgakopoulos, A. (2008a). Molecular indicators for pollution source identification in marine and terrestrial water of the industrial area of Kavala city, North Greece. Environmental Pollution, 151, 231–242.CrossRefGoogle Scholar
  19. Grigoriadou, A., Schwarzbauer, J., & Georgakopoulos, A. (2008b). Organic geochemical parameters for estimation of petrogenic inputs in the coastal area of Kavala City, Greece. Journal of Soils and Sediments, 8, 253–262.CrossRefGoogle Scholar
  20. HNMS (Hellenic National Meteorological Service). (1978). Climatic data of the Greek network, period 1930–1975 (p. 100). Greece: HNMS (in Greek).Google Scholar
  21. Hesterberg, D. (1998). Biogeochemical cycles and processes leading to changes in mobility of chemicals in soils. Agriculture, Ecosystems & Environment, 67, 121–133.CrossRefGoogle Scholar
  22. Horckmans, L., Swennen, R., Deckers, J., & Maquil, R. (2005). Local background concentrations of trace elements in soils: A case study in the Grand Duchy of Luxembourg. Catena, 59, 279–304.CrossRefGoogle Scholar
  23. Islam, R. M. D., Salminen, R., & Lahermo, P. W. (2000). Arsenic and other toxic elemental contamination of groundwater, surfacewater and soil in Bangladesh and its possible effects on human health. Environmental Geochemistry and Health, 22, 33–53.CrossRefGoogle Scholar
  24. Johnson, C. C., & Ander, E. L. (2008). Urban geochemical mapping: How and why we do them. Environmental Geochemistry and Health, 30, 511–530.CrossRefGoogle Scholar
  25. Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed., p. 413). New York: CRC.Google Scholar
  26. Kelepertsis, A., Argyraki, A., & Alexakis, D. (2006). Multivariate statistics and spatial interpretation of geochemical data for assessing soil contamination by potentially toxic elements in the mining area of Stratoni, north Greece. Geochemistry—Exploration Environment Analysis, 6, 349–355.CrossRefGoogle Scholar
  27. Kilias, A. A., & Mountrakis, D. M. (1998). Tertiary extension of the Rhodope massif associated with granite emplacement (northern Greece). Acta Vulcanologica, 10, 331–337.Google Scholar
  28. Kilias, A. A., Falalakis, G., & Mountrakis, D. M. (1999). Cretaceous–Tertiary structures and kinematics of the Serbomacedonian metamorphic rocks and their relation to the exhumation of the Hellenic hinterland (Macedonia, Greece). International Journal of Earth Sciences, 88, 513–531.CrossRefGoogle Scholar
  29. Lepeltier, C. (1969). A simplified statistical treatment of geochemical data by graphical representation. Economic Geology, 64, 538–550.CrossRefGoogle Scholar
  30. Lucho-Constantino, C. A., Álvarez-Suárez, M., Beltrán-Hernández, R. I., Prieto-García, F., & Poggi-Varaldo, H. M. (2005). A multivariate analysis of the accumulation and fractionation of major and trace elements in agricultural soils in Hidalgo State, Mexico irrigated with raw wastewater. Environment International, 31, 313–323.CrossRefGoogle Scholar
  31. Papastergios, G. (2008). Environmental geochemical study of soils and sediments in coastal areas, east of Kavala (Macedonia, Greece) and production of geochemical maps via the use of GIS. PhD, Aristotle University of Thessaloniki, Greece (in Greek, with English abstract), 224pGoogle Scholar
  32. Papastergios, G., Fernandez-Turiel, J. L., Georgakopoulos, A., & Gimeno, D. (2010). Arsenic background concentrations in surface soils of Kavala area, northern Greece. Water, Air & Soil Pollution, 209, 323–331.CrossRefGoogle Scholar
  33. Papastergios, G., Filippidis, A., Fernandez-Turiel, J. L., Gimeno, D., & Sikalidis, C. (2010). Natural and anthropogenic effects on the soil geochemistry of Kavala area, northern Greece. Bulletin of the Geological Society of Greece, 43, 2373–2382.Google Scholar
  34. Papastergios, G., Filippidis, A., Fernandez–Turiel, J. L., Gimeno, D., & Sikalidis C. (2010c). Distribution of potentially toxic elements in sediments of an industrialized coastal zone of the northern Aegean Sea. Environmental Forensics, 11 (3).Google Scholar
  35. Parslow, G. R. (1974). Determination of background and threshold in exploration geochemistry. Journal of Geochemical Exploration, 3, 319–336.CrossRefGoogle Scholar
  36. Pe-Piper, G., & Piper, D. J. W. (2002). The igneous rocks of Greece, the anatomy of an orogen (p. 573). Berlin: Gebrüder Borntraeger.Google Scholar
  37. Pérez-Sirvent, C., Martínez-Sánchez, M. J., García-Lorenzo, M. L., Molina, J., & Tudela, M. L. (2009). Geochemical background levels of zinc, cadmium and mercury in anthropically influenced soils located in a semi-arid zone (SE, Spain). Geoderma, 148, 307–317.CrossRefGoogle Scholar
  38. Petalas, C., Pliakas, F., Diamantes, I., & Kallioras, A. (2004). Study of the distribution of precipitation in District of Eastern Macedonia and Thrace for the Period 1964–1998. Bulletin of the Geological Society of Greece, 36, 1054–1063 (in Greek).Google Scholar
  39. Pickering, W. F. (1986). Metal ion speciation—Soils and sediments (a review), Ore Geology Reviews 1 (pp. 83–146). Amsterdam: Elsevier Science.Google Scholar
  40. Ramsey, M. H. (1997). Sampling and sampling preparation. In R. Gill (Ed.), Modern analytical geochemistry, an introduction to quantitative chemical analysis techniques for earth, environmental and materials scientists (p. 329). England: Pearson Education.Google Scholar
  41. Reimann, C., Filzmoser, P., & Garrett, R. G. (2005). Background and threshold: Critical comparison of methods of determination. The Science of the Total Environment, 346, 1–16.CrossRefGoogle Scholar
  42. Sampson, M. L., Bostick, B., Chiew, H., Hagan, J. M., & Shantz, A. (2008). Arsenicosis in Cambodia: Case studies and policy response. Applied Geochemistry, 23, 2977–2986.CrossRefGoogle Scholar
  43. Sastre, J., Sahuquillo, A., Vidal, M., & Rauret, G. (2002). Determination of Cd, Cu, Pb and Zn in environmental samples: Microwave-assisted total digestion versus aqua regia and nitric acid extraction. Analytica Chimica Acta, 462, 59–72.CrossRefGoogle Scholar
  44. Sierra, M., Martínez, F. J., & Aguilar, J. (2007). Baselines for trace elements and evaluation of environmental risk in soils of Almería (SE Spain). Geoderma, 139, 209–219.CrossRefGoogle Scholar
  45. Sin, S. N., Chua, H., Lo, W., & Ng, L. M. (2001). Assessments of heavy metal cations in sediments of Shing Mun River, Hong Kong. Environment International, 26, 297–301.CrossRefGoogle Scholar
  46. Sinclair, A. J. (1991). A fundamental approach to threshold estimation in exploration geochemistry: Probability plots revisited. Journal of Geochemical Exploration, 41, 1–22.CrossRefGoogle Scholar
  47. Stanley, C. R., & Sinclair, A. J. (1987). Anomaly recognition for multielement geochemical data—A background characterization approach. Journal of Geochemical Exploration, 29, 333–353.CrossRefGoogle Scholar
  48. Theophanides, M., Anastassopoulou, J., & Theophanides, T. (2002a). A statistical study of disease-related mortalities due to environmental pollutants in Kavala, Greece. In: Environmental science and pollution research, 8th FECS Conference on Chemistry and the Environment (p. 44), 2002Google Scholar
  49. Theophanides, T., Vassilakos, C. H., Anastassopoulou, J., Maggos, T., Hatzianestis, J., & Bartzis, I. (2002b). Chemical characterization of VOCs in Nea Karvali area, Kavala, Greece. In: Environmental science and pollution research, 8th FECS Conference on Chemistry and the Environment (pp. 45–46), 2002Google Scholar
  50. Theophanides, M., Anastassopoulou, J., Vasilakos, C., Maggos, T., & Theophanides, T. (2007). Mortality and pollution in several Greek cities. Journal of Environmental Science and Health, Part A, 42, 741–746.CrossRefGoogle Scholar
  51. Vavelidis, M., Christofides, G., & Melfos, V. (1996). The Au–Ag bearing mineralization and placer gold of Palea Kavala (Macedonia, N. Greece), Terranes of Serbia. In V. Knežević & B. Krstić (Eds.), The formation of the geologic framework of Serbia and the adjacent regions (pp. 311–316). Belgrade: Faculty of Mining and Geology. Brezovica.Google Scholar
  52. Vavelidis, M., Melfos, V., & Eleftheriadis, G. (1997). Mineralogy and microthermometric investigations in the Au-bearing sulphide mineralization of Palea Kavala (Macedonia, Greece). In H. Papunen (Ed.), Mineral deposits: Research and exploration, where do they meet? (pp. 343–346). Rotterdam: Balkema.Google Scholar
  53. Vistelius, A. B. (1960). The skew frequency distribution and the fundamental law of geochemical processes. Journal of Geology, 68, 1–22.CrossRefGoogle Scholar
  54. Walsh, J. N., Gill, R., & Thirwall, M. F. (1997). Dissolution procedures for geochemical and environmental samples. In R. Gill (Ed.), Modern analytical geochemistry, an introduction to quantitative chemical analysis techniques for earth, environmental and materials scientists (p. 329). England: Pearson Education.Google Scholar
  55. Wu, Y., Hou, X., Cheng, X., Yao, S., Xia, W., & Wang, S. (2007). Combining geochemical and statistical methods to distinguish anthropogenic source of metals in lacustrine sediment: A case study in Dongjiu Lake, Taihu Lake Catchment, China. Environmental Geology, 52, 1467–1474.CrossRefGoogle Scholar
  56. Zhang, C., Manheim, F. T., Hinde, J., & Grossman, J. N. (2005). Statistical characterization of a large geochemical database and effect of sample size. Applied Geochemistry, 20, 1857–1874.CrossRefGoogle Scholar
  57. Zhang, C., Fay, D., McGrath, D., Grennan, E., & Carton, O. T. (2008). Statistical analyses of geochemical variables in soils of Ireland. Geoderma, 146, 378–390.CrossRefGoogle Scholar
  58. Zhang, H. B., Luo, Y. M., Wong, M. H., Zhao, Q. G., & Zhang, G. L. (2007). Defining the geochemical baseline: A case of Hong Kong soils. Environmental Geology, 52, 843–851.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Georgios Papastergios
    • 1
    Email author
  • Anestis Filippidis
    • 1
  • Jose-Luis Fernandez-Turiel
    • 2
  • Domingo Gimeno
    • 3
  • Constantinos Sikalidis
    • 4
  1. 1.Department of Mineralogy–Petrology–Economic Geology, School of GeologyAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Institute of Earth Sciences “Jaume Almera”Consejo Superior de Investigaciones Científicas (CSIC)BarcelonaSpain
  3. 3.Faculty of GeologyUniversity of Barcelona, Zona Universitària de PedralbesBarcelonaSpain
  4. 4.School of Chemical EngineeringAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations