Skip to main content
Log in

Growth and Physiological Responses of Triticum aestivum and Deschampsia caespitosa Exposed to Petroleum Coke

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Over the past decades, the global production of petroleum coke, a by-product of the oil sand industry, has increased with the growing importance of oil sands as a source of fossil fuels. A greenhouse study using Triticum aestivum and Deschampsia caespitosa was conducted to assess the growth and physiological effects of coke on plants. The plants were grown in cokes with or without a cap of peat–mineral mix and were compared to plants grown in a peat–mineral mix (control). Our results indicate that the selected plants can survive in coke; however, stress symptoms such as reductions in transpiration (45–91%) and stomatal conductance rates (44–92%) in T. aestivum, biomass in T. aestivum (5–83%) and D. caespitosa (43–90%), photosynthetic pigments in T. aestivum (32–68%) and D. caespitosa (33–44%) and proline concentrations in D. caespitosa (77–97%) were observed. Furthermore, potentially phytotoxic concentrations of nickel (47–69 μg g−1 in D. caespitosa) and vanadium (9.3–18.3 μg g−1 in T. aestivum and 4–27.8 μg g−1 in D. caespitosa) were found in some tissues while molybdenum accumulated in D. caespitosa shoots at concentrations reported, in other studies, to cause molybdenosis in ruminants. These results suggest that the plants growing in coke could experience multiple stresses including water stress, nutrient deficiencies and/or Ni and V toxicity. Capping coke with peat–mineral mix limited the stress symptoms and could improve revegetation success of coke impoundment sites. This study provides baseline data for future long-term field studies essential for developing coke management guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adriano, D. C. (1986). Trace elements in the terrestrial environment. New York: Springer.

    Google Scholar 

  • Ain-Lhout, F., Zunzunegui, M., Diaz Barradas, M. C., Tirado, R., Clavijo, A., & Garcia Novo, F. (2001). Comparison of proline accumulation in two Mediterranean shrubs subjected to natural and experimental water deficit. Plant and Soil, 230(2), 175–183.

    Article  CAS  Google Scholar 

  • Aller, A. J., Berna, J. L., del Nozal, M. J., & Deban, L. (1990). Effects of selected trace elements on plant growth. Journal of the Science of Food and Agriculture, 51(4), 447–479.

    Article  Google Scholar 

  • Brennan, R. F., & Adcock, K. G. (2004). Incidence of boron toxicity in spring barley in southwestern Australia. J Plant Nutr, 27(3), 411–425.

    Article  CAS  Google Scholar 

  • Clarkson, D. T., Eugénio, D., & Sara, A. (1999). Uptake and assimilation of sulphate by sulphur deficient Zea mays cells: the role of O-acetyl-l-serine in the interaction between nitrogen and sulphur assimilatory pathways. Plant Physiology and Biochemistry, 37(4), 283–290.

    Article  CAS  Google Scholar 

  • Chatterjee, C., Sinha, P., & Dube, B. K. (2005). Biochemical changes, yield, and quality of Gram under boron stress. Communications in Soil Science and Plant Analysis, 36(13–14), 1736–1771.

    Google Scholar 

  • Chung, K. H., Janke, L. C. G., Dureau, R., & Furimsky, E. (1996). Leachability of cokes from Syncrude stockpiles. Environmental Science and Engineering Magazine, 3, 50–53.

    Google Scholar 

  • Creelman, R. A., Mason, H. S., Bensen, R. J., Boyer, J. S., & Mullet, J. E. (1990). Water deficit and abscisic acid cause differential inhibition of shoot versus root growth in soybean seedlings. Plant Physiology, 92(1), 205–214.

    Article  CAS  Google Scholar 

  • Davies, B. H. (1976). Carotenoids. In T. W. Goodwin (Ed.), Chemistry and biochemistry of plant pigments (pp. 38–165). New York: Academic.

    Google Scholar 

  • Elmore, C. D., & McMichael, B. L. (1981). Proline accumulation by water and nitrogen stressed cotton. Crop Science, 21(2), 244–248.

    Article  CAS  Google Scholar 

  • Ernst, W. H. O. (1996). Bioavailability of heavy metals and decontamination of soils by plants. Applied Geochemistry, 11, 163–167.

    Article  CAS  Google Scholar 

  • Fargašová, A. (1998). Root growth inhibition, photosynthetic pigments production, and metal accumulation in Sinapis alba as the parameters for trace metals effect determination. Bulletin of Environmental Contamination and Toxicology, 61(6), 762–769.

    Article  Google Scholar 

  • Ferguson, W. S., Lewis, A. H., & Watson, S. J. (1943). The teart pastures of Somerset: I. The cause and cure of teartness. Journal of Agricultural Science, 33(1), 44–51.

    Article  CAS  Google Scholar 

  • Flexas, J., & Medrano, H. (2002). Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Annals of Botany, 89(2), 183–189.

    Article  CAS  Google Scholar 

  • Forcella, F., Benech Arnold, R. L., Sanchez, R., & Ghersa, C. M. (2000). Modeling seedling emergence. Field Crop Research, 67(2), 123–139.

    Article  Google Scholar 

  • Frank, R., Stonefield, K. I., Suda, P., & Potter, J. W. (1982). Impact of nickel contamination on the production of vegetables on an organic soil, Ontario, Canada, 1980–1981. The Science of the Total Environment, 26(1), 41–65.

    Article  CAS  Google Scholar 

  • George, R. L. (1998). Mining for oil. Scientific American, 278, 84–85.

    Article  CAS  Google Scholar 

  • Glass, A. D. M. (2002). Nutrient absorption by plant roots: Regulation of uptake to match plant demand. In Y. Waisel, A. Eshel, & U. Kafkafi (Eds.), Plant roots, the hidden half (2nd ed., pp. 571–586). New York: Marcel Dekker.

    Google Scholar 

  • Guller, L., & Krucká, M. (1993). Ultrastructure of grape-vine (Vitis vinifera) chloroplasts under Mg- and Fe-deficiencies. Photosynthetica, 29(3), 417–425.

    CAS  Google Scholar 

  • Hendershot, W. H., Lalande, H., & Duquette, M. (1993). Soil reaction and exchangeable acidity. In M. R. Carter (Ed.), Soil sampling and methods of analysis (pp. 141–145). Boca Raton: Lewis.

    Google Scholar 

  • Jacobs, D. L., & Otte, M. L. (2003). Conflicting processes in the wetland plant rhizosphere: metal retention or mobilization? Water, Air, and Soil Pollution, 3, 91–104.

    Google Scholar 

  • Jones, J. B. (1998). Plant nutrition manual. New York: CRC.

    Google Scholar 

  • Jones, K. C., Lepp, N. W., & Obard, J. P. (1990). Other metals and metalloids. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 208–321). New York: Wiley.

    Google Scholar 

  • Kaplan, D. I., Adriano, D., Carlson, C. L. C., & Sajwan, K. S. (1990). Vanadium: Toxicity and accumulation by beans. Water, Air, and Soil Pollution, 49, 81–91.

    Article  CAS  Google Scholar 

  • Kuja, A.L., Hutchinson, T.C. (1979). The use of native species in mine tailings revegetation. In Proceedings: Canadian Land Reclamation Association, fourth annual meeting, Regina, Sask., The Canadian Land Reclamation Association meeting, Regina, Canada, pp. 207–221.

  • Kukier, U., & Chaney, R. L. (2001). Amelioration of nickel phytotoxicity in muck and mineral soils. Journal of Environmental Quality, 30(6), 1949–1960.

    Article  CAS  Google Scholar 

  • Lawlor, D. W. (1979). Effects of water and heat stress on carbon metabolism of plants with C3 and C4 photosynthesis. In H. Mussell & R. E. Staples (Eds.), Stress physiology of crop plants (pp. 303–326). New York: Wiley.

    Google Scholar 

  • Laza, R. C., Bergman, B., & Vergara, B. S. (1993). Cultivar differences in growth and chloroplast ultrastructure in rice as affected by nitrogen. Journal of Experimental Botany, 44(11), 1643–1648.

    Article  CAS  Google Scholar 

  • Liu, K., & Luan, S. (1998). Voltage-dependent K+ channels as targets of osmosensing in guard cells. The Plant Cell, 10(11), 1957–1970.

    Article  CAS  Google Scholar 

  • MacKinney, G. (1941). Absorption of light by chlorophyll solutions. The Journal of Biological Chemistry, 144(2), 315–323.

    Google Scholar 

  • Maliszewska-Kordybach, B., & Smreczak, B. (2003). Habitat function of agricultural soils as affected by heavy metals and polycyclic aromatic hydrocarbons contamination. Environment International, 28(8), 719–728.

    Article  CAS  Google Scholar 

  • McGrath, S. P., & Smith, S. (1990). Chromium and Nickel. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 125–150). New York: Wiley.

    Google Scholar 

  • Nable, R. O., Bañuelos, G. S., & Paull, J. G. (1997). Boron toxicity. Plant and Soil, 193(1–2), 181–198.

    Article  CAS  Google Scholar 

  • Nelson, D. L., & Cox, M. M. (2000). Lehninger principles of biochemistry (3rd ed.). New York: Worth.

    Google Scholar 

  • Neunhäuserer, C., Berreck, M., & Insam, H. (2001). Remediation of soils contaminated with molybdenum using soil amendments and phytoremediation. Water, Air, and Soil Pollution, 128(1–2), 85–96.

    Article  Google Scholar 

  • Raven, P. H., Evert, R. F., & Eichhorn, S. E. (1999). Biology of plants (6th ed.). New York: Worth.

    Google Scholar 

  • Renault, S., MacKinnon, M., & Qualizza, C. (2003). Barley, a potential species for initial reclamation of saline composite tailings of oil sands. Journal of Environmental Quality, 32(6), 2245–2253.

    Article  CAS  Google Scholar 

  • Richards, J. E. (1993). Chemical characterization of plant tissue. In M. R. Carter (Ed.), Soil sampling and methods of analysis (pp. 115–139). Boca Raton: Lewis.

    Google Scholar 

  • Rodenkirchen, H., & Roberts, B. A. (1993). Soils and plant nutrition on a serpentinized ridge in South Germany. II. Foliage macro-nutrient and heavy metal concentrations. Zeitschrift für Pflanzenernährung und Bodenkunde, 156(5), 411–413.

    Article  CAS  Google Scholar 

  • Sheppard, S. C., & Evenden, W. G. (1995). Systematic identification of analytical indicators to measure soil load on plants for safety assessment purposes. International Journal of Environmental Analytical Chemistry, 59(2–4), 239–252.

    Article  CAS  Google Scholar 

  • Singh, B. B. (1971). Effect of vanadium on the growth, yield and chemical composition of maize (Zea mays). Plant and Soil, 34(1), 209–213.

    Article  CAS  Google Scholar 

  • Sofo, A., Dichio, B., Xiloyannis, C., & Masia, A. (2004). Lipoxygenase activity and proline accumulation in leaves and roots of olive trees in response to drought stress. Physiologia Plantarum, 121(1), 58–65.

    Article  CAS  Google Scholar 

  • Squires, A.J. (2005). Ecotoxicological assessment of using coke in aquatic reclamation strategies at the Alberta oil sands. MSc thesis, University of Saskatchewan, Saskatoon.

  • Taylor, C. B. (1996). Proline and water deficit: Ups, downs, ins, and outs. The Plant Cell, 8(8), 1221–1224.

    Article  CAS  Google Scholar 

  • Uhart, S. A., & Andrade, F. H. (1995). Nitrogen deficiency in maize: II. Carbon–nitrogen interaction effects on kernel number and grain yield. Crop Science, 35(5), 1384–1389.

    Article  Google Scholar 

  • United Nations. (2006). Petroleum coke. Available via UNdata Energy Statistics Database. http://data.un.org/Data.aspx?d=EDATA&f=cmID:OG;trID:0924. Accessed 13 Jan 2009.

  • USEPA. (2006). Data quality assessment: Statistical methods for practitioners. Washington, DC: USEPA.

    Google Scholar 

  • Woolhouse, H. W., et al. (1983). Toxicity and tolerance in the responses of plants to metals. In Lange (Ed.), Encyclopedia of plant physiology. Vol12. Physiological plant ecology III (pp. 245–300). Berlin: Springer.

    Google Scholar 

  • Yang, X., Baligar, V. C., Martens, D. C., & Clark, R. B. (1996). Plant tolerance to nickel toxicity: I. Influx, transport, and accumulation of nickel in four species. Journal of Plant Nutrition, 19(1), 73–85.

    Article  CAS  Google Scholar 

  • Zhang, H., Zhao, F., Sun, B., Davison, W., & Mcgrath, S. P. (2001). A new method to measure effective soil solution concentration predicts copper availability to plants. Environmental Science & Technology, 35, 2602–2607.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Karen Kivinen, Carl Szczerski, Scott Green and Greg Morden for their technical assistance. We also would like to thank Wayne Tedder from Suncor Energy Inc. for providing petroleum coke and valuable input. Thanks to Dr. M. Sumner and the anonymous reviewers for providing critical reviews of the manuscript. Funding for this project was provided by Syncrude Canada Ltd., Suncor Energy Inc., Canadian Natural Resources Ltd. and the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Renault.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakata, C., Qualizza, C., MacKinnon, M. et al. Growth and Physiological Responses of Triticum aestivum and Deschampsia caespitosa Exposed to Petroleum Coke. Water Air Soil Pollut 216, 59–72 (2011). https://doi.org/10.1007/s11270-010-0514-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0514-x

Keywords

Navigation