Water, Air, & Soil Pollution

, Volume 216, Issue 1–4, pp 39–49 | Cite as

Responses of Biochemical Markers in the Fish Prochilodus lineatus Exposed to a Commercial Formulation of Endosulfan

  • Carla Bacchetta
  • Jimena Cazenave
  • María Julieta ParmaEmail author


Among the most extensively used compounds for the pest control in Argentinean crops is the organochlorine endosulfan. The sublethal effects of the commercial endosulfan formulation on hematology and lipid peroxidation (LPO) of the neotropical fish Prochilodus lineatus were investigated. Firstly, we calculated acute toxicity (LC50) in order to define sublethal concentrations (0, 1.2, and 2.4 μg L−1). Hematological and oxidative stress responses were assessed at 24, 48, and 96 h. Endosulfan exposure significantly diminished the hemoglobin concentration, mean cell hemoglobin, and total plasma protein and increased white blood cells count and plasma glucose after 96 h. Exposed fish showed an alteration of the differential leukocytes count, evidenced by more thrombocytes and monocytes and less lymphocytes and neutrophils. Endosulfan increased LPO levels in intestine, liver, and brain in both sublethal concentrations. The present results suggest that endosulfan produces biochemical and physiological alterations, including immunological disorders, and it is a good inductor of oxidative stress in P. lineatus.


Fish Biomarkers Hematology Oxidative stress Pesticide 



This work was supported by grants from Agencia Nacional de Promoción Científica y Técnica (PICT-1764), Consejo de Investigaciones Científicas y Técnicas (PIP-11420090100178), and Universidad Nacional del Litoral (CAI+D). We thank Wiener Lab for providing some kits for analysis. Authors wish to thank to Regner, Lordi, and Creus for their collaboration during field work.


  1. Agrahari, S., Pandey, K. C., & Gopal, K. (2006). Effect of monocrotophos on erythropoietic activity and hematological parameters of the freshwater fish Channa punctatus (Bloch). Bulletin of Environmental Contamination and Toxicology, 76, 607–613.Google Scholar
  2. Atif, F., Ali, M., Kaur, M., Rehman, H., & Raisuddin, S. (2005). Modulatory effect of cadmium injection on endosulfan-induced oxidative stress in the freshwater fish Channa punctata Bloch. Bulletin of Environmental Contamination and Toxicology, 74, 777–784.CrossRefGoogle Scholar
  3. Ballesteros, M. L., Bianchi, G. B., Carranza, M., & Bistoni, M. A. (2007). Endosulfan acute toxicity and histomorphological alterations in Jenynsia multidentata (Anablepidae, Cyprinodontiformes). Journal of Environmental Science and Health, 42B, 351–357.Google Scholar
  4. Ballesteros, M. L., Durando, P. E., Nores, M. L., Díaz, M. P., Bistoni, M. A., & Wunderlin, D. A. (2009a). Endosulfan induces changes in spontaneous swimming activity and acetylcholinesterase activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes). Environmental Pollution, 5, 17–43.Google Scholar
  5. Ballesteros, M. L., Wunderlin, D. A., & Bistoni, M. A. (2009b). Oxidative stress responses in different organs of Jenynsia multidentata exposed to endosulfan. Ecotoxicology and Environmental Safety, 72, 199–205.CrossRefGoogle Scholar
  6. Berntssen, M. H. G., Glover, C. N., Robb, D. H. F., Jakobsen, J.-V., & Petri, D. (2008). Accumulation and elimination kinetics of dietary endosulfan in Atlantic salmon (Salmo salar). Aquatic Toxicology, 86, 104–111.CrossRefGoogle Scholar
  7. Bisson, M., & Hontela, A. (2002). Cytotoxic and endocrine-disrupting potential of atrazine, diazinon, endosulfan, and mancozeb in adrenocortical steroidogenic cells of rainbow trout exposed in vitro. Toxicology and Applied Pharmacology, 180, 110–117.CrossRefGoogle Scholar
  8. Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  9. Buhl, K. J. (1997). Relative sensitivity of three endangered fishes, Colorado squawfish, bonytail, razorback sucker, to selected metal pollutants. Ecotoxicology and Environmental Safety, 37, 186–192.CrossRefGoogle Scholar
  10. Camargo, M. M. P., & Martinez, C. B. R. (2006). Biochemical and physiological biomarkers in Prochilodus lineatus submitted to in situ tests in an urban stream in southern Brazil. Environmental Toxicology and Pharmacology, 21, 61–69.CrossRefGoogle Scholar
  11. Capkin, E., Altinok, I., & Karahan, S. (2006). Water quality and fish size affect toxicity of endosulfan, an organochlorine pesticide, to rainbow trout. Chemosphere, 64, 1793–1800.CrossRefGoogle Scholar
  12. Carriger, J. F., Hoang, T. C., & Rand, G. M. (2009). Survival time analysis of least killifish (Heterandria formosa) and mosquitofish (Gambusia affinis) in acute exposures to endosulfan sulfate. Archives of Environmental Contamination and Toxicology, 58, 1015–1022. doi: 10.1007/s00244-009-9415-7.CrossRefGoogle Scholar
  13. Carvalho, C. S., & Fernandes, M. N. (2008). Effect of copper on liver key enzymes of anaerobic glucose metabolism from freshwater tropical fish Prochilodus lineatus. Comparative Biochemistry and Physiology, 151A, 437–442.Google Scholar
  14. Cavalcante, D. G. S. M., Martinez, C. B. R., & Sofia, S. H. (2008). Genotoxic effects of Roundup® on the fish Prochilodus lineatus. Mutation Research, 655, 41–46.Google Scholar
  15. Cazenave, J., Bacchetta, C., Parma, M. J., Scarabotti, P. A., & Wunderlin, D. A. (2009). Multiple biomarkers responses in Prochilodus lineatus allowed assessing changes in the water quality of Salado River basin (Santa Fe, Argentina). Environmental Pollution, 157, 3025–3033.CrossRefGoogle Scholar
  16. Chambers, J. H., & Carr, R. L. (1995). Biochemical mechanisms contributing to species differences in insecticidal toxicity. Toxicology, 105, 291–304.CrossRefGoogle Scholar
  17. Coimbra, A. M., Reis-Henriques, M. A., & Darras, V. M. (2005). Circulating thyroid hormone levels and iodothyronine deiodinase activities in Nile tilapia (Oreochromis niloticus) following dietary exposure to Endosulfan and Aroclor 1254. Comparative Biochemistry and Physiology, 141C, 8–14.Google Scholar
  18. Crestani, M., Menezes, C., Glusczak, L., dos Santos Miron, D., Spanevello, R., Silveira, A., et al. (2007). Effect of clomazone herbicide on biochemical and histological aspects of silver catfish (Rhamdia quelen) and recovery pattern. Chemosphere, 67, 2305–2311.CrossRefGoogle Scholar
  19. Dorval, J., Leblond, V. S., & Hontela, A. (2003). Oxidative stress and loss of cortisol secretion in adrenocortical cells of rainbow trout (Oncorhynchus mykiss) exposed in vitro to endosulfan, an organochlorine pesticide. Aquatic Toxicology, 63, 229–241.CrossRefGoogle Scholar
  20. Dutta, H. M., & Arends, D. A. (2003). Effects of endosulfan on brain acetylcholinesterase activity in juvenile bluegill sunfish. Environmental Research, 91, 157–162.CrossRefGoogle Scholar
  21. Fatima, M., Ahmad, I., Sayeed, I., Athar, M., & Raisuddin, S. (2000). Pollutant-induced over-activation of phagocytes is concomitantly associated with peroxidative damage in fish tissues. Aquatic Toxicology, 49, 243–250.CrossRefGoogle Scholar
  22. Franco, R., Sánchez-Olea, R., Reyes-Reyes, E. M., & Panayiotidis, M. I. (2009). Environmental toxicity, oxidative stress and apoptosis: Ménage à Trois. Mutation Research, 674, 3–22.Google Scholar
  23. Girón-Pérez, M. I., Montes-López, M., García-Ramírez, L. A., Romero-Bañuelos, C. A., & Robledo-Marenco, M. L. (2008). Effect of sub-lethal concentrations of endosulfan on phagocytic and hematological parameters in Nile tilapia (Oreochromis niloticus). Bulletin of Environmental Contamination and Toxicology, 80, 266–269.CrossRefGoogle Scholar
  24. Glover, C. N., Petri, D., Tollefsen, K.-E., Jørum, N., Handy, R. D., & Berntssen, M. H. G. (2007). Assessing the sensitivity of Atlantic salmon (Salmo salar) to dietary endosulfan exposure using tissue biochemistry and histology. Aquatic Toxicology, 84, 346–355.CrossRefGoogle Scholar
  25. Glusczak, L., dos Santos Miron, D., Crestani, M., Braga de Fonseca, M., de Araújo Pedron, F., Frescura Duarte, M., et al. (2006). Effect of glyphosate herbicide on acetylcholinesterase activity and metabolic and hematological parameters in piava (Leporinus obtusidens). Ecotoxicology and Environmental Safety, 65, 48–55.CrossRefGoogle Scholar
  26. Handy, R. D., & Depledge, M. H. (1999). Physiological responses: Their measurement and use as environmental biomarkers in Ecotoxicology. Ecotoxicology, 8, 329–349.CrossRefGoogle Scholar
  27. Harford, A. J., O’Halloran, K., & Wright, P. F. A. (2005). The effects of in vitro pesticide exposure on the phagocytic function of four Australian freshwater fish. Aquatic Toxicology, 75, 330–342.CrossRefGoogle Scholar
  28. Hii, Y. S., Yee, L. M., & Seng, C. T. (2007). Acute toxicity of organochlorine insecticide endosulfan and its effect on behavior and some hematological parameters of Asian swamp eel (Monopterus albus, Zuiew). Pesticide Biochemistry and Physiology, 89, 46–53.CrossRefGoogle Scholar
  29. Houston, A. H. (1990). Blood and circulation. In C. B. Schreck & P. B. Moyle (Eds.), Methods for fish biology (pp. 273–334). Bethesda: American Fisheries Society.Google Scholar
  30. Jobling, M. (1995). Fish bioenergetics. London: Chapman & Hall.Google Scholar
  31. John, P. J. (2007). Alteration of certain blood parameters of freshwater teleost Mystus vittatus after chronic exposure to Metasystox and Sevin. Fish Physiology and Biochemistry, 33, 15–20.CrossRefGoogle Scholar
  32. Jonsson, C. M., & Toledo, M. C. F. (1993). Acute toxicity of endosulfan to the fish Hyphessobrycon bifasciatus and Brachydanio rerio. Archives of Environmental Contamination and Toxicology, 24, 151–155.CrossRefGoogle Scholar
  33. Kelly, S. A., Havrilla, C. M., Brady, T. C., Harris Abramo, K., & Levin, E. D. (1998). Oxidative stress in toxicology: Established mammalian and emerging piscine model systems. Environmental Health Perspectives, 106, 375–384.Google Scholar
  34. Kohen, R., & Nyska, A. (2002). Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicologic Pathology, 30, 620–650.CrossRefGoogle Scholar
  35. Langiano, V. C., & Martinez, C. B. R. (2008). Toxicity and effects of a glyphosate-based herbicide on the Neotropical fish Prochilodus lineatus. Comparative Biochemistry and Physiology, 147C, 222–231.Google Scholar
  36. Lee, H.-K., Moon, J.-K., Chang, C.-H., Choi, H., Park, H.-W., Park, B.-S., et al. (2006). Stereoselective metabolism of endosulfan by human liver microsomes and human cytochrome P450 isoforms. Drug Metabolism and Disposition, 34, 1090–1095.CrossRefGoogle Scholar
  37. Leatherland, J. F., Ballantyne, J. S., & Van Der Kraak, G. (1998). Diagnostic assessment of non-infectious disorders of captive and wild fish populations and the use of fish as sentinel organisms for environmental studies. In J. F. Leatherland & P. T. K. Woo (Eds.), Fish diseases and disorders Vol 2: Non-infectious disorders (pp. 335–366). Bristol: CABI.Google Scholar
  38. Lecklin, T., Tuominen, A., & Nikinmaa, M. (2000). The adrenergic volume changes of immature and mature rainbow trout (Oncorhynchus mykiss) erythrocytes. The Journal of Experimental Biology, 203, 3025–3031.Google Scholar
  39. Magesh, S., & Kumaraguru, A. K. (2006). Acute toxicity of endosulfan to the milkfish, Chanos chanos, of the southeast coast of India. Bulletin of Environmental Contamination and Toxicology, 76, 622–628.CrossRefGoogle Scholar
  40. Matés, J. M. (2000). Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology, 153, 83–104.CrossRefGoogle Scholar
  41. Mazon, A. F., Monteiro, E. A. S., Pinheiro, G. H. D., & Fernandes, M. N. (2002). Hematological and physiological changes induced by short-term exposure to Cooper in the freshwater fish, Prochilodus scrofa. Brazilian Journal of Biology, 62, 621–631.CrossRefGoogle Scholar
  42. Mishra, R., & Schukla, S. P. (1994). Effects of endosulfan on bioenergetic properties of liver mitochondria from freshwater catfish Clarias batrachus. Pesticide Biochemistry and Physiology, 50, 240–246.CrossRefGoogle Scholar
  43. Monserrat, J. M., Martínez, P. E., Geracitano, L. A., Amado, L. L., Martinez Gaspar Martins, C., Pinho, G. L. L., et al. (2007). Pollution biomarkers in estuarine animals: Critical review and new perspectives. Comparative Biochemistry and Physiology, 146C, 221–234.Google Scholar
  44. Naqvi, S. M., & Vaishnavi, C. (1993). Bioaccumulative potential and toxicity of endosulfan insecticide to non-target animals. Comparative Biochemistry and Physiology, 105C, 347–361.Google Scholar
  45. Niimi, A. J. (1990). Review of biochemical methods and other indicators to assess fish health in aquatic ecosystems containing toxic chemicals. Journal of Great Lakes Research, 16, 529–541.CrossRefGoogle Scholar
  46. Nowak, B. (1996). Relationship between endosulfan residue level and ultrastructural changes in liver of catfish, Tandanus tandanus. Archives of Environmental Contamination and Toxicology, 30, 195–202.CrossRefGoogle Scholar
  47. Oakes, K. D., McMaster, M. E., & Van Der Kraak, G. J. (2004). Oxidative stress response in longnose sucker (Catostomus catostomus) exposed to pulp and paper mill and municipal sewage effluents. Aquatic Toxicology, 67, 255–271.CrossRefGoogle Scholar
  48. OECD (Organization for Economic Cooperation and Development). (1992). Guideline for the testing of chemicals: Fish, acute toxicity test, N° 203. Paris: OECD.Google Scholar
  49. Páliková, M., Mareš, J., & Jirásek, J. (1999). Characteristics of leukocytes and thrombocytes of selected sturgeon species from intensive breeding. Acta Veterinaria Brunensis, 68, 259–264.CrossRefGoogle Scholar
  50. Pandey, S., Parvez, A. S., Bin-Hafeez, B., Haque, R., & Raisuddin, S. (2001). Effect of endosulfan on antioxidants of freshwater fish Channa punctatus Bloch: 1. Protection against lipid peroxidation in liver by cooper preexposure. Archives of Environmental Contamination and Toxicology, 41, 345–352.CrossRefGoogle Scholar
  51. Pandey, S., Nagpure, N. S., Kumar, R., Sharma, S., Srivastava, S. K., & Verma, M. S. (2006). Genotoxicity evaluation of acute doses of endosulfan to freshwater teleost Channa punctatus (Bloch) by alkaline single-cell gel electrophoresis. Ecotoxicology and Environmental Safety, 65, 56–61.CrossRefGoogle Scholar
  52. Parma de Croux, M. J. (1990). Benzocaine (ethyl-p-aminobenzoate) as an anaesthetic for Prochilodus lineatus, Valenciennes (Pisces, Curimatidae). Journal of Applied Ichthyology, 6, 189–192.CrossRefGoogle Scholar
  53. Parma de Croux, M. J. (1994). Some hematological parameters in Prochilodus lineatus (Pisces, Curimatidae). Revue d’Hydrobiologie tropicale, 27, 113–119.Google Scholar
  54. Parma, M. J., Loteste, A., Campana, M., & Bacchetta, C. (2007). Changes of hematological parameters in Prochilodus lineatus (Pisces, Prochilodontidae) exposed to sublethal concentration of cypermethrin. Journal of Environmental Biology, 28, 147–149.Google Scholar
  55. Pereira Maduenho, L., & Martinez, C. B. R. (2008). Acute effects of diflubenzuron on the fish Prochilodus lineatus. Comparative Biochemistry and Physiology, 148C, 265–272.Google Scholar
  56. Petri, D., Glover, C. N., Ylving, S., Kolås, K., Fremmersvik, G., Waagbø, R., et al. (2006). Sensitivity of Atlantic salmon (Salmo salar) to dietary endosulfan as assessed by hematology, blood biochemistry, and growth parameters. Aquatic Toxicology, 80, 207–216.CrossRefGoogle Scholar
  57. Ranzani-Paiva, M. J. T., Rodriguez, E. L., Veiga, M. L., Eiras, A. C., & Campos, B. E. S. (2003). Differential leukocyte counts in “dourado”, Salminus maxillosus Valenciennes, 184, from the Mogi-Guaçu river, Pirassununga, SP. Brazilian Journal of Biology, 63, 517–525.CrossRefGoogle Scholar
  58. Rossi, L., Cordiviola, E., & Parma, M. J. (2007). Fishes. In M. H. Iriondo, J. C. Paggi, & M. J. Parma (Eds.), The middle Paraná River. Limnology of a subtropical wetland (pp. 305–321). Berlin: Springer.Google Scholar
  59. Reichenbach-Klinke, H. H. (1980). Enfermedades de los peces. Zaragoza: Acribia.Google Scholar
  60. Roberts, R. J. (1981). Patología de los peces. Madrid: Mundiprensa.Google Scholar
  61. Sastry, K. V., & Siddiqui, A. A. (1983). Metabolic changes in the snake head fish Channa punctatus chronically exposed to endosulfan. Water, Air, and Soil Pollution, 19, 133–141.Google Scholar
  62. Shafiq-ur-Rehman (2006). Endosulfan toxicity and its reduction by selenium: A behavioral, hematological and peroxidative stress evaluation. The Internet Journal of Toxicology, 3(1).
  63. Silva, C., Boia, C., Valente, J., & Borrego, C. (2005). Pesticides in Esteros del Ibera (AR): Evaluation of impacts and proposal of guidelines for water quality protection. Ecological Modelling, 186, 85–97.CrossRefGoogle Scholar
  64. Simonato, J. D., Guedes, C. L. B., & Martinez, C. B. R. (2008). Biochemical, physiological, and histological changes in the neotropical fish Prochilodus lineatus exposed to diesel oil. Ecotoxicology and Environmental Safety, 69, 112–120.CrossRefGoogle Scholar
  65. Sohn, H.-S., Kwon, C.-S., Kwon, G.-S., Lee, J.-B., & Kim, E. (2004). Induction of oxidative stress by endosulfan and protective effect of lipid-soluble antioxidants against endosulfan-induced oxidative damage. Toxicology Letters, 151, 357–365.CrossRefGoogle Scholar
  66. Soivio, A., & Nikinmaa, M. (1981). The swelling of erythrocytes in relation to the oxygen affinity of the blood of the rainbow trout, Salmo gairdneri Richardson. In A. D. Pickering (Ed.), Stress and fish (pp. 103–118). London: Academic.Google Scholar
  67. Sverlij, S. B., Espinach Ros, A., & Orti, G. (1993). Sinopsis de los datos biológicos y pesqueros del sábalo Prochilodus lineatus (Valenciennes, 1847). FAO Sinopsis sobre la pesca N° 154, Roma.Google Scholar
  68. Sweilum, M. A. (2006). Effect of sublethal toxicity of some pesticides on growth parameters, hematological properties and total production of Nile tilapia (Oreochromis niloticus L.) and water quality ponds. Aquaculture Research, 37, 1079–1089.CrossRefGoogle Scholar
  69. Takashima, F., & Hibiya, T. (1995). An atlas of fish histology. Normal and pathological features (2nd ed.). Tokyo: Kondansha.Google Scholar
  70. Tavares-Dias, M., & de Moraes, F. R. (2007). Leukocyte and thrombocyte reference values for channel catfish (Ictalurus punctatus Raf), with an assessment of morphologic, cytochemical, and ultrastructural features. Veterinary Clinical Pathology, 36, 49–54.CrossRefGoogle Scholar
  71. Thangavel, P., Sumathiral, K., Maheswari, S., Rita, S., & Ramaswamy, M. (2010). Hormone profile of an edible, freshwater teleost, Sarotherodon mossambicus (Peters) under endosulfan toxicity. Pesticide Biochemistry and Physiology. doi: 10.1016/j.pestbp.2010.03.001.Google Scholar
  72. Tellez-Bañuelos, M. C., Santerre, A., Casas-Solis, J., Bravo-Cuellar, A., & Zaitseva, G. (2009). Oxidative stress in macrophages from spleen of Nile tilapia (Oreochromis niloticus) exposed to sublethal concentration of endosulfan. Fish & Shellfish Immunology, 27, 105–111.CrossRefGoogle Scholar
  73. Trenzado, C. E., Carrick, T. R., & Pottinger, T. G. (2003). Divergence of endocrine and metabolic responses to stress in two rainbow trout lines selected for differing cortisol responsiveness to stress. General and Comparative Endocrinology, 133, 332–340.CrossRefGoogle Scholar
  74. US EPA (United States Environmental Protection Agency). (1989). Method 508: Determination of chlorinated pesticides in water by gas chromatography with an electron capture detector. Cincinnati: National Exposure Research Laboratory Office of Research and Development US EPA.Google Scholar
  75. US EPA (1992). Probit analysis program used for calculating LC/EC values. Version 1.5. Cincinnati: Ecological Monitoring Research Division, Environmental Monitoring Systems Laboratory US EPA.Google Scholar
  76. US EPA (2002). Reregistration eligibility decision (RED) document for endosulfan. N° 738-F-02-012. Washington, DC: Office of the Pesticide Programs (OPP), US EPA.Google Scholar
  77. Valavanidis, A., Vlahogianni, T., Dassenakis, M., & Scoullos, M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety, 64, 178–189.CrossRefGoogle Scholar
  78. Van der Oost, R., Beyer, J., & Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environmental Toxicology and Pharmacology, 13, 57–149.CrossRefGoogle Scholar
  79. Vanzella, T. P., Martinez, C. B. R., & Cólus, I. M. S. (2007). Genotoxic and mutagenic effects of diesel oil water soluble fraction on a neotropical fish species. Mutation Research, 631, 36–43.Google Scholar
  80. Velisek, J., Svobodova, Z., & Piackova, V. (2009). Effects of acute exposure to bifenthrin on some haematological, biochemical and histopathological parameters of rainbow trout (Oncorrhynchus mykiss). Veterinární Medicína, 54, 131–137.Google Scholar
  81. Vittozzi, L., & De Angelis, G. (1991). A critical review of comparative acute toxicity data on freshwater fish. Aquatic Toxicology, 19, 167–204.CrossRefGoogle Scholar
  82. Wagner, G. N., Singer, T. D., & McKinley, R. S. (2003). The ability of clove oil and MS-222 to minimize handling stress in rainbow trout (Oncorhynchus mykiss Walbaum). Aquaculture Research, 34, 1139–1146.CrossRefGoogle Scholar
  83. Wan, M. T., Kuo, J.-N., Buday, C., Schroeder, G., Van Aggelen, G., & Pasternak, J. (2005). Toxicity of α-, β-, (α + β)-endosulfan and their formulated and degradation products to Daphnia magna, Hyalella azteca, Oncorhynchus mykiss, Oncorhynchus kitsutch, and biological implications in streams. Environmental Toxicology and Chemistry, 24, 1146–1154.CrossRefGoogle Scholar
  84. Weber, J., Halsall, C. J., Teixeira, C., Small, J., Solomon, K., Hermanson, M., et al. (2009). Endosulfan, a global pesticide: A review of its fate in the environment and occurrence in the Arctic. The Science of the Total Environment, 408, 2966–2984. doi: 10.1016/j.scitotenv.2009.10.077.CrossRefGoogle Scholar
  85. Winkaler, E. U., Santos, T. R. M., Machado-Neto, J. G., & Martinez, C. B. R. (2007). Acute lethal and sublethal effects of neem leaf extract on the neotropical freshwater fish Prochilodus lineatus. Comparative Biochemistry and Physiology, 145C, 236–244.Google Scholar
  86. Winston, G. W., & Di Giulio, R. T. (1991). Prooxidant and antioxidant mechanisms in aquatic organisms. Aquatic Toxicology, 19, 137–161.CrossRefGoogle Scholar
  87. Zhang, X., Yang, F., Zhang, X., Xu, Y., Liao, T., Song, S., et al. (2008). Induction of hepatic enzymes and oxidative stress in Chinese rare minnow (Gobiocypris rarus) exposed to waterborne hexabromocyclododecane (HBCDD). Aquatic Toxicology, 86, 4–11.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Carla Bacchetta
    • 1
  • Jimena Cazenave
    • 1
    • 2
  • María Julieta Parma
    • 1
    • 2
    Email author
  1. 1.Laboratorio de IctiologíaInstituto Nacional de Limnología (INALI-CONICET-UNL)Santa FeArgentina
  2. 2.Departamento de Ciencias Naturales, Facultad de Humanidades y CienciasUniversidad Nacional del Litoral (FHUC-UNL)Santa FeArgentina

Personalised recommendations