Water, Air, & Soil Pollution

, Volume 216, Issue 1–4, pp 3–19 | Cite as

Characterization of AMD Pollution in the River Tinto (SW Spain). Geochemical Comparison Between Generating Source and Receiving Environment

  • Maria Luisa de la TorreEmail author
  • Jose Antonio Grande
  • Jorge Graiño
  • Tamara Gómez
  • Juan Carlos Cerón


With the aim of obtaining precise knowledge of the spatial–temporal behavior of the chemistry of the river Tinto, both in the area of the headwaters, close to the point at which the acid mine drainage (AMD) pollution is carried into this river, and in the area before tidal influence, daily sampling was carried out from the end of October 2007 to the beginning of June 2008. In addition to pH, conductivity, and redox potential, sulfates, As, Cd, Fe, Cu, Zn, and Mn were determined for each sample. By studying the results obtained from the statistical processing applied, it can be deduced, first and foremost, that the river Tinto is a watercourse which is highly polluted by acid mine drainage throughout its length. It can also be determined that the order of abundance of the polluting elements, in terms of the concentration of the various parameters in milligrams per liter, follows the pattern, both in the generating source and the receiving environment: SO4 > Fe > Cu > Zn > Mn > Cd > As. The concentration values for As carried into the river in the generating source, with average values of 640 μg l−1 and with a maximum of 1,540 μg l−1 (ten times greater than the maximum found in the receiving environment), far exceed 10 μg l−1, the value established by the EU as the maximum permissible concentration in drinking water, as a consequence of the high eco-toxicity of this element. Specifically, in the correlation matrix, no correlation was found between the variables for both points. It can only be made out in the cross-correlation function graphs through low correlation, prior to time t = 0, that pollution in the generating source leads to pollution in the receiving environment.


Tinto River Heavy metals Arsenic Acid mine drainage Iberian pyrite belt pH Conductivity Sulfates 



The present study was supported by the Andalusian Autonomous Government Excellence Projects, Project P06-RNM-02167.


  1. Amils, R. (2006). Rio Tinto as terrestrial analogue for a putative Martian habitat. AIAA 57th Internacional Astronautical Congreso, IAC, 16, 11325–11339.Google Scholar
  2. Aroba, J., Grande, J. A., Andujar, J. M., de la Torre, M. L., & Riquelme, J. C. (2007). Application of fuzzy logic and data mining techniques as tool for qualitative interpretation of acid mine drainage processes. Environmental Geology, 53, 135–145.CrossRefGoogle Scholar
  3. Bisquerra, R. (1989). Introducción conceptual al análisis multivariable. Barcelona: Promoc. Public. Univ, S.A.Google Scholar
  4. Borrego, J., Morales, J. A., de la Torre, M. L., & Grande, J. A. (2002). Geochemical characteristics of heavy metal pollution in surface sediments of the Tinto and Odiel river estuary (Southwester Spain). Environmental Geology, 41, 785–796.CrossRefGoogle Scholar
  5. Cánovas, C. R., Hubbard, C. G., Olías, M., Nieto, J. M., Black, S., & Coleman, M. L. (2008). Hydrochemical variations and contaminant load in the Río Tinto (Spain) during flood events. Journal of Hydrology, 350, 25–40.CrossRefGoogle Scholar
  6. Casiot, C., Egal, M., Elbaz-Poulichet, F., Bruneel, O., Bancon-Montigny, C., Cordier, M., et al. (2009). Hydrological and geochemical control of metals and arsenic in a Mediterranean river contaminated by acid mine drainage (the Amos River, France): Preliminary assessment of impacts on fish (Leuciscus cephalus). Applied Geochemistry. doi: 10.1016/j.apgeochem.2009.01.006.Google Scholar
  7. Cheng, H., Hu, Y., Luo, J., Xu, B., & Zhao, J. (2008). Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems. Journal of Hazardous Materials. doi: 10.1016/j.jhazmat.2008.10.070.Google Scholar
  8. de la Torre, M. L., Grande, J. A., Jiménez, A., Borrego, J., & Díaz Curiel, J. (2009). Time evolution of an AMD-affected river chemical makeup. Water Resources Management, 23, 1275–1289.CrossRefGoogle Scholar
  9. Demchack, J., Skousen, J., & McDonald, L. M. (2004). Longevity of acid discharges from underground mines located above the regional water table. Journal of Environmental Quality, 33, 656–668.CrossRefGoogle Scholar
  10. Egal, M., Elbaz-Poulichet, F., Casiot, C., Motelica-Heino, M., Négrel, P., Bruneel, O., et al. (2008). Iron isotopes in acid mine waters and iron-rich solids from the Tinto–Odiel Basin (Iberian Pyrite Belt, Southwest Spain). Chemical Geology, 253, 162–171.CrossRefGoogle Scholar
  11. EMCBC. (1996). The perpetual pollution machine. Acid mine drainage (pp. 1–6). Canada: B.C. Mining Control.Google Scholar
  12. Fernández-Remolar, D. C., Gómez-Elvira, J., Gómez, F., Sebastián, E., Martín, J., Manfredi, J. A., et al. (2004). The Tinto river, an extreme acidic environment under control iron, as an analog of the Terra Meridiani hematite site of Mars. Planetary and Space Science, 52(1–3), 239–248.CrossRefGoogle Scholar
  13. Grande, J. A., Borrego, J., de la Torre, M. L., & Sáinz, A. (2003). Application of cluster analysis to the geochemistry zonation of the estuary waters in The Tinto and Odiel rivers. Environmental Geochemistry and Health, 25, 233–246.CrossRefGoogle Scholar
  14. Grande, J. A., Borrego, J., Morales, J. A., & de la Torre, M. L. (2003). A description of how metal pollution occurs in the Tinto–Odiel rias (Huelva-Spain) through the application of cluster analysis. Marine Pollution Bulletin, 46, 475–480.CrossRefGoogle Scholar
  15. Grande, J. A., Beltrán, R., Sáinz, A., Santos, J. C., de la Torre, M. L., & Borrego, J. (2005). Acid mine drainage and acid rock drainage processes in the environment of Herrerias Mine (Iberian Pyrite Belt, Huelva- Spain), and impact on the Andevalo dam. Environmental Geology, 47, 185–196.CrossRefGoogle Scholar
  16. Grande, J. A., Andújar, J. M., Aroba, J., de la Torre, M. L., & Beltrán, R. (2005). Precipitation, pH and metal load in AMD river basins: An application of fuzzy clustering algorithms to the process characterization. Journal of Environmental Monitoring, 7, 325–334.CrossRefGoogle Scholar
  17. Jiménez, A., Aroba, J., de la Torre, M. L., Andújar, J. M., & Grande, J. A. (2009). Model of behaviour of conductivity versus pH in acid mine drainage waters, based on fuzzy logic and data mining techniques. Journal of Hydroinformatics, 112, 147–153.CrossRefGoogle Scholar
  18. Lin, C., Wu, Y., Lu, W., Chen, A., & Liu, Y. (2007). Water chemistry and ecotoxicity of an acid mine drainage-affected stream in subtropical China during a major flood event. Journal of Hazardous Materials, 142, 199–207.CrossRefGoogle Scholar
  19. Morales, J. A., Borrego, J., San Miguel, E. G., López-González, N., & Carro, B. (2008). Sedimentary record of recent tsunamis in the Huelva Estuary (southwestern Spain). Quaternary Science Reviews, 27, 734–746.CrossRefGoogle Scholar
  20. Nieto, J. M., Sarmiento, A. M., Olías, M., Canovas, C. R., Riba, I., Kalman, J., et al. (2007). Acid mine drainage pollution in the Tinto and Odiel rivers (Iberian Pyrite Belt, SW Spain) and bioavailability of the transported metals to the Huelva Estuary. Environment International, 33(4), 445–455.CrossRefGoogle Scholar
  21. Olías, M., Nieto, J. M., Sarmiento, A. M., Cerón, J. C., & Cánovas, C. R. (2004). Seasonal water quality variations in a river affected by acid mine drainage: The Odiel River (South West Spain). The Science of the Total Environment, 333, 267–281.CrossRefGoogle Scholar
  22. Ortiz M. 2003. Aproximación a la minería y metalurgia de minas de Riotinto desde la antigüedad al siglo XIX. PhD Thesis. Spain.Google Scholar
  23. Pinedo Vara, I. (1963). Piritas de Huelva. Madrid: Summa.Google Scholar
  24. Ruiz, F., Borrego, J., González-Regalado, M. L., López, N., & Carro, B. (2008). Abad M. Impact of millennial mining activities on sediments and microfauna on the Tinto River estuary (SW Spain). Marine Pollution Bulletin, 56, 1258–1264.CrossRefGoogle Scholar
  25. Sáez, R., Pascual, E., Toscano, M., & Almodovar, G. R. (1999). The Iberian type of volcano-sedimentary massive sulphide deposits. Mineralium Deposita, 34, 549–570.CrossRefGoogle Scholar
  26. Sáinz, A., Grande, J. A., de la Torre, M. L., & Sánchez-Rodas, D. (2002). Characterisation of sequential leachate discharges of mining waste rock dumps in the Tinto and Odiel rivers. Journal of Environmental Management, 64, 345–353.CrossRefGoogle Scholar
  27. Sáinz, A., Grande, J. A., & de la Torre, M. L. (2004). Characterisation of heavy metal discharge into the Ria of Huelva. Environment International, 30, 557–566.CrossRefGoogle Scholar
  28. Sáinz, A., Grande, J. A., & de la Torre, M. L. (2005). Application of systemic approach to the study of pollution of the Tinto and Odiel rivers (Spain). Environmental Monitoring and Assessment, 102, 435–445.CrossRefGoogle Scholar
  29. Sánchez-Rodas, D., Gómez-Ariza, J. L., Giraldez, I., Velasco, A., & Morales, E. (2005). Arsenic speciation in river and estuarine waters from southwest Spain. The Science of the Total Environment, 345(1–3), 207–217.Google Scholar
  30. Sarmiento, A. M., Nieto, J. M., Casiot, C., Elbaz-Poulichet, F., & Egal, M. (2009). Inorganic arsenic speciation at river basin scales: The Tinto and Odiel Rivers in the Iberian Pyrite Belt, SW Spain. Environmental Pollution, 157(4), 1202–1209.CrossRefGoogle Scholar
  31. Sarmiento, A. M., Nieto, J. M., Olías, M., & Cánovas, C. R. (2009). Hydrochemical characteristics and seasonal influence on pollution by acid mine drainage in the Odiel river basin. Applied Geochemistry. doi: 10.1016/j.apgeochem.2008.12.025.Google Scholar
  32. Sobron, P., Rull, F., Sobron, F., Sanz, A., Medina, J., & Nielsen, C. J. (2007). Raman spectroscopy of the system iron(III)–sulfuric acid–water: An approach to Tinto River´s (Spain) hydrogeochemistry. Spectrochimica Acta Part A, 68, 1138–1142.CrossRefGoogle Scholar
  33. Stoker, C. R., Cannon, H. N., Duganan, S. E., Lemke, L. G., Glass, B. J., Miller, D., et al. (2008). The 2005 MARTE robotic drilling experiment in Río Tinto, Spain: Objectives, approach, and results of a simulated mission to search for life in the martian subsurface. Astrobiology, 8(5), 921–945.CrossRefGoogle Scholar
  34. Vicente-Martorell, J. J., Galindo-Riaño, M. D., & García-Vargas, M. (2009). Bioavailability of heavy metals monitoring water, sediments and fish species from a polluted estuary. Journal of Hazardous Materials, 162, 823–836.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Maria Luisa de la Torre
    • 1
    Email author
  • Jose Antonio Grande
    • 1
  • Jorge Graiño
    • 1
  • Tamara Gómez
    • 1
  • Juan Carlos Cerón
    • 2
  1. 1.Grupo de Geología Costera y Recursos Hídricos. Escuela Politécnica SuperiorUniversidad de HuelvaPalos de la FronteraSpain
  2. 2.Grupo de Geomorfología ambiental y Recursos Hídricos. Facultad de Ciencias ExperimentalesUniversidad de HuelvaHuelvaSpain

Personalised recommendations