Skip to main content
Log in

Sonochemical Degradation of Chlorinated Phenolic Compounds in Water: Effects of Physicochemical Properties of the Compounds on Degradation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study examined a comparative degradation of various chlorinated phenolic compounds including phenol, 4-chlorophenol (4-CP), 2,6-dichlorophenol (2,6-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP), and pentachlorophenol (PCP) using 28, 580, and 1,000 kHz ultrasonic reactors. The concentration of hydrogen peroxide was also determined in order to investigate the efficacy of different sonochemical reactors for hydroxyl radical production. Clearly, it was observed that the 580 kHz sonochemical reactor had maximum efficacy for hydroxyl radical production. The degradation of all the compounds followed the order; 580 kHz (91–93%) > 1,000 kHz (84–86%) > 28 kHz (17–34%) with an initial concentration of 2.5 mg L−1 at a reaction time of 40 min with ultrasonic power of 200 ± 3 W and aqueous temperature of 20 ± 1°C in each experiment. Overall, the degradation of those phenolic compounds followed the order, PCP > 2,3,4,6-TeCP > 2,4,6-TCP > 2,6-DCP > 4-CP > phenol at various frequencies in the presence/absence of a radical scavenger (tert-butyl alcohol). It was revealed that the correlations between the compound degradation rates and the physicochemical parameters, R 2 = 0.99 for octanol–water partition coefficient, R 2 = 0.95 for water solubility, R 2 = 0.94 for vapor pressure, and R 2 = 0.88 for Henry’s law constant, excluding PCP, were very good in the entire range of each parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adewuyi, Y. G. (2001). Sonochemistry: Environmental science and engineering applications. Industrial & Engineering Chemistry Research, 40, 4681–4715.

    Article  CAS  Google Scholar 

  • Ahlborg, U. G., & Thunberg, T. M. (1980). Chlorinated phenols—Occurrence, toxicity, metabolism, and environmental impact. Critical Reviews in Toxicology, 7, 1–35.

    Article  CAS  Google Scholar 

  • Ashokkumar, M., Hall, R., Mulvaney, P., & Grieser, F. (1997). Sonoluminescence from aqueous alcohol and surfactant solutions. The Journal of Physical Chemistry B, 101, 10845–10850.

    Article  CAS  Google Scholar 

  • Ashokkumar, M., Mulvaney, P., & Grieser, F. (1999). The effect of pH on multibubble sonoluminescence from aqueous solutions containing simple organic weak acids and bases. Journal of the American Chemical Society, 121, 7355–7359.

    Article  CAS  Google Scholar 

  • Bapat, P. S., Gogate, P. R., & Pandit, A. B. (2008). Theoretical analysis of sonochemical degradation of phenol and its chloro-derivatives. Ultrasonics Sonochemistry, 15, 564–570.

    Article  CAS  Google Scholar 

  • Benitez, F. J., Beltran-Heredia, J., Acero, J. L., & Rubio, F. J. (2000). Rate constants for the reactions of ozone with chlorophenols in aqueous solutions. Journal of Hazardous Materials, 79, 271–285.

    Article  CAS  Google Scholar 

  • Berlan, J., Trabelsi, F., Delmas, H., Wilhelm, A. M., & Petrignani, J. F. (1994). Oxidative degradation of phenol in aqueous media using ultrasound. Ultrasonics Sonochemistry, 1, S97–S102.

    Article  CAS  Google Scholar 

  • Buikema, A. L., McGinniss, M. J., & Cairns, J. (1979). Phenolics in aquatic ecosystems—Selected review of recent literature. Marine Environmental Research, 2, 87–181.

    Article  CAS  Google Scholar 

  • Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution. Journal of Physical and Chemical Reference Data, 17, 513–886.

    CAS  Google Scholar 

  • Chand, R., Ince, N. H., Gogate, P. R., & Bremner, D. H. (2009). Phenol degradation using 20, 300 and 520 kHz ultrasonic reactors with hydrogen peroxide, ozone and zero valent metals. Separation and Purification Technology, 67, 103–109.

    Article  CAS  Google Scholar 

  • Cheng, J., Vecitis, C. D., Park, H., Mader, B. T., & Hoffmann, M. R. (2008). Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in sandfill groundwater: Environmental matrix effects. Environmental Science & Technology, 42, 8057–8063.

    Article  CAS  Google Scholar 

  • Chowdhury, P., & Viraraghavan, T. (2009). Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes—A review. The Science of the Total Environment, 407, 2474–2492.

    Article  CAS  Google Scholar 

  • Folke, J., & Lindgaardjorgensen, P. (1985). Organics in wheat and rye straw pulp bleaching and combined mill effluents. 1. Chemical characterization and biodegradation studies. Toxicological and Environmental Chemistry, 10, 1–24.

    CAS  Google Scholar 

  • Francony, A., & Petrier, C. (1996). Sonochemical degradation of carbon tetrachloride in aqueous solution at two frequencies: 20 kHz and 500 kHz. Ultrasonics Sonochemistry, 3, S77–S82.

    Article  CAS  Google Scholar 

  • Gogate, P. R. (2008). Treatment of wastewater streams containing phenolic compounds using hybrid techniques based on cavitation: A review of the current status and the way forward. Ultrasonics Sonochemistry, 15, 1–15.

    Article  CAS  Google Scholar 

  • Gultekin, I., & Ince, N. H. (2008). Ultrasonic destruction of bisphenol-A: The operating parameters. Ultrasonics Sonochemistry, 15, 524–529.

    Article  Google Scholar 

  • Hao, H. W., Wu, M. S., Chen, Y. F., Yin, Y. W., & Lu, Z. L. (2003). Cavitation-induced pyrolysis of toxic chlorophenol by high-frequency ultrasonic irradiation. Environmental Toxicology, 18, 413–417.

    Article  CAS  Google Scholar 

  • Ho, T. F. L., & Bolton, J. R. (1998). Toxicity changes during the UV treatment of pentachlorophenol in dilute aqueous solution. Water Research, 32, 489–497.

    Article  CAS  Google Scholar 

  • Hu, J. Y., Yuan, T., Ong, S. L., Song, L. F., & Ng, W. J. (2003). Identification and quantification of bisphenol A by gas chromatography and mass spectrometry in a lab-scale dual membrane system. Journal of Environmental Monitoring, 5, 141–144.

    Article  CAS  Google Scholar 

  • Isariebel, Q. P., Carine, J. L., Ulises-Javier, J. H., Anne-Marie, W., & Henri, D. (2009). Sonolysis of levodopa and paracetamol in aqueous solutions. Ultrasonics Sonochemistry, 16, 610–616.

    Article  CAS  Google Scholar 

  • Jiang, Y., Petrier, C., & Waite, T. D. (2006). Sonolysis of 4-chlorophenol in aqueous solution: Effects of substrate concentration, aqueous temperature and ultrasonic frequency. Ultrasonics Sonochemistry, 13, 415–422.

    Article  CAS  Google Scholar 

  • Kang, J. W., Hung, H. M., Lin, A., & Hoffmann, M. R. (1999). Sonolytic destruction of methyl tert-butyl ether by ultrasonic irradiation: The role of O-3, H2O2, frequency, and power density. Environmental Science & Technology, 33, 3199–3205.

    Article  CAS  Google Scholar 

  • Kang, N., Lee, D. S., & Yoon, J. (2002). Kinetic modeling of Fenton oxidation of phenol and monochlorophenols. Chemosphere, 47, 915–924.

    Article  CAS  Google Scholar 

  • Katsumata, H., Kaneco, S., Suzuki, T., Ohta, K., & Yobiko, Y. (2007). Sonochemical degradation of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxins in aqueous solution with Fe(III)/UV system. Chemosphere, 69, 1261–1266.

    Article  CAS  Google Scholar 

  • Keith, L. H., & Telliard, W. A. (1979). Priority pollutants I—A perspective review. Environmental Science & Technology, 13, 416–423.

    Article  Google Scholar 

  • Kidak, R., & Ince, N. H. (2006). Ultrasonic destruction of phenol and substituted phenols: A review of current research. Ultrasonics Sonochemistry, 13, 195–199.

    Article  CAS  Google Scholar 

  • Kormann, C., Bahnemann, D. W., & Hoffmann, M. R. (1988). Photocatalytic production of H2O2 and organic peroxides in aqueous suspensions of TiO2, ZnO, and desert sand. Environmental Science & Technologie, 22, 798–806.

    Article  CAS  Google Scholar 

  • Krijgsheld, K. R., & Vandergen, A. (1986). Assessment of the impact of the emission of certain organochlorine compounds on the aquatic environment. 1. Monochlorophenols and 2, 4-dichlorophenol. Chemosphere, 15, 825–860.

    Article  CAS  Google Scholar 

  • Lorimer, J. P., & Mason, T. J. (1987). Sonochemistry. 1. The physical aspects. Chemical Society Reviews, 16, 239–274.

    Article  CAS  Google Scholar 

  • Nakui, H., Okitsu, K., Maeda, Y., & Nishimura, R. (2009). Sonochemical decomposition of hydrazine in water: Effects of coal ash and pH on the decomposition and adsorption behavior. Chemosphere, 76, 716–720.

    Article  CAS  Google Scholar 

  • Nanzai, B., Okitsu, K., Takenaka, N., Bandow, H., & Maeda, Y. (2008). Sonochemical degradation of various monocyclic aromatic compounds: Relation between hydrophobicities of organic compounds and the decomposition rates. Ultrasonics Sonochemistry, 15, 478–483.

    Article  CAS  Google Scholar 

  • Okuno, H., Yim, B., Mizukoshi, Y., Nagata, Y., & Maeda, Y. (2000). Sonolytic degradation of hazardous organic compounds in aqueous solution. Ultrasonics Sonochemistry, 7, 261–264.

    Article  CAS  Google Scholar 

  • Puyol, D., Mohedano, A. F., Sanz, J. L., & Rodriguez, J. J. (2009). Comparison of UASB and EGSB performance on the anaerobic biodegradation of 2, 4-dichlorophenol. Chemosphere, 76, 1192–1198.

    Article  CAS  Google Scholar 

  • Rehorek, A., Hoffmann, P., Kandelbauer, A., & Gubitz, G. M. (2007). Sonochemical substrate selectivity and reaction pathway of systematically substituted azo compounds. Chemosphere, 67, 1526–1532.

    Article  CAS  Google Scholar 

  • Scow, K., Goyer, M., & Perwak, J. (1982). Exposure and risk assessment for chlorinated phenols (2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol). Cambridge, MA: Arthur D. Little. EPA 440/4-85-007; NTIS PB85-211951.

  • Song-Hu, Y., & Xiao-Hua, L. (2005). Comparison treatment of various chlorophenols by electro-Fenton method: relationship between chlorine content and degradation. Journal of Hazardous Materials, 118, 85–92.

    Article  Google Scholar 

  • SRC. (2006). Syracuse Research Corporation, Interactive PhysProp Database. http://www.syrres.com/esc/physdemo.htm.

  • STSDR. (1994). Agency for Toxic Substances and Disease Registry (ATSDR)/US Public Health Service. Toxicological profile for pentachlorophenol (update). TSDR, Atlanta, Georgia

  • Svitelska, G. V., Gallios, G. P., & Zouboulis, A. I. (2004). Sonochemical decomposition of natural polyphenolic compound (condensed tannin). Chemosphere, 56, 981–987.

    Article  CAS  Google Scholar 

  • Teo, K. C., Xu, Y. R., & Yang, C. (2001). Sonochemical degradation for toxic halogenated organic compounds. Ultrasonics Sonochemistry, 8, 241–246.

    Article  CAS  Google Scholar 

  • Vassilakis, C., Pantidou, A., Psillakis, E., Kalogerakis, N., & Mantzavinos, D. (2004). Sonolysis of natural phenolic compounds in aqueous solutions: degradation pathways and biodegradability. Water Research, 38, 3110–3118.

    Article  CAS  Google Scholar 

  • Westerhoff, P., Yoon, Y., Snyder, S., & Wert, E. (2005). Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environmental Science & Technology, 39, 6649–6663.

    Article  CAS  Google Scholar 

  • Wu, Z. L., Ondruschka, B., & Stark, A. (2005). Ultrasonic cleavage of thioethers. The Journal of Physical Chemistry A, 109, 3762–3766.

    Article  CAS  Google Scholar 

  • Yim, B., Nagata, Y., & Maeda, Y. (2002). Sonolytic degradation of phthalic acid esters in aqueous solutions. Acceleration of hydrolysis by sonochemical action. The Journal of Physical Chemistry A, 106, 104–107.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Korea Ministry of Environment, “GAIA Project, 02-141-081-021).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeomin Yoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JS., Her, NG. & Yoon, Y. Sonochemical Degradation of Chlorinated Phenolic Compounds in Water: Effects of Physicochemical Properties of the Compounds on Degradation. Water Air Soil Pollut 215, 585–593 (2011). https://doi.org/10.1007/s11270-010-0501-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0501-2

Keywords

Navigation