Skip to main content

Advertisement

Log in

The Role of Leaky Boreholes in the Contamination of a Regional Confined Aquifer. A Case Study: The Campo de Cartagena Region, Spain

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Poorly constructed wells (leaky or without a gravel pack) and abandoned wells can behave as conduits for the interconnection of aquifers at different depths and facilitate the transfer of contaminants between these aquifers. This is the case with Campo de Cartagena (SE Spain) where the primary land use is intensive irrigated agriculture, along with a high density of wells. The unconfined aquifer is heavily impacted by a high concentration of nitrate associated with agricultural activities. The present work provides a methodological approach to evaluate the impact of the unconfined aquifer on the water quality of the confined aquifer caused by leaky wells in high-density areas of production wells. The research approach included the use of geochemical and isotopic tools; specifically, nitrate was used as a tracer for evaluating the impact, and the code MIX_PROGRAM was used for mixing calculations. Results show an increase of the impact of the unconfined aquifer on the confined aquifer along the groundwater flow direction toward the coast, although this general pattern is controlled by local factors (pumping, intensity of agricultural practices, density of wells, and groundwater residence time).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adar, E. M., & Nativ, R. (2000). Use of hydrochemistry and isotopes in a mixing-cell to quantify the relative contribution of multiple-source contaminants to seepage from fractured chalk aquitard. IAHS Publ, 262, 315–320.

    CAS  Google Scholar 

  • Altman, S. J., & Parizek, R. R. (1995). Dilution of nonpoint-source nitrate in groundwater. Journal of Environmental Quality, 24, 707–718.

    Article  CAS  Google Scholar 

  • Banner, J. L., Wasserburg, G. J., Dobson, P. F., Carpenter, A. B., & Moore, C. H. (1989). Isotopic and trace element constraints on the origin and evolution of saline groundwaters from central Missouri. Geochimica et Cosmochimica Acta, 53, 383–398.

    Article  CAS  Google Scholar 

  • Boulton, N. S. (1963). Analysis of data from non-equilibrium pumping tests allowing for delayed yield from storage. In: Proceedings of Institution of Civil Engineers, 26(6693), 469–482.

  • CARM. (2008). Consejería de Agricultura y Agua de la Región de Murcia. Agrarian Statistics Data. http://www.carm.es.

  • Carrera, J., Vazquez-Suñé, E., Catillo, O., & Sánchez-Vila, X. (2004). A methodology to compute mixing ratios with uncertain end-members. Water Resources Research, 40, W12101. doi:10.1029/2003WR002263.

    Article  Google Scholar 

  • Carter, J. T., Gotkowitz, M., Anderson, M. P. (2007). Vertical Hydraulic connection between a perched carbonate aquifer and an underlying regional aquifer. In: Proceedings of 2007 GSA Denver Annual Meeting.

  • Candela, L. (2000). Groundwater pollution from mineral fertilizers and pesticides in Spain. Hydrogeologie, 3, 85–91.

    Google Scholar 

  • Custodio, E., & Herrera, C. (2000). Use of the ratio Cl/Br as a hydrogeochemical tracer in groundwater hydrology (in Spanish). Boletín Geologico y Minero, 111(4), 49–68.

    Google Scholar 

  • Frind, E. O., Muhammad, D. S., & Molson, J. W. (2002). Delineation of three dimensional well capture zones for complex multi-aquifer systems. Ground Water, 40(6), 586–598.

    Article  CAS  Google Scholar 

  • Frisch, J. (1987). Pollution des eaux souterranines par les nitrates: l´impact sur l´agriculture moderne Europäische Konferenz. Einflüesse der Landwirtschaft auf die Wassenrressourcen. Folgen und zukünftige Entwincklugen, Berlin, pp. 103–123.

  • García-Pintado, J., Martínez-Mena, M., Barberá, G. G., Albaladejo, J., & Castillo, V. (2007). Anthropogenic nutrient sources and loads from a Mediterranean catchment into a coastal lagoon: Mar Menor Spain. Science of the Total Environment, 373, 220–239.

    Article  Google Scholar 

  • Guimerà, J. (1998). Anomalously high nitrate concentrations in ground water. Ground Water, 36(2), 275–282.

    Article  Google Scholar 

  • Hantush, M. S. (1960). Modification of the theory of leaky aquifers. Journal of Geophysical Research, 65(11), 3713–3725.

    Article  Google Scholar 

  • Hantush, M. S., & Jacob, C. E. (1955). Non-steady radial flow in an infinite leaky aquifer. American Geophysical Union Transactions, 6, 95–100.

    Google Scholar 

  • IGME. (1994). Las aguas subterráneas del Campo de Cartagena (Murcia). IGME, 62 pp.

  • Jiménez-Martínez, J., & Custodio, E. (2008). Deuterium excess in rain and in recharge to aquifers in Circum-Mediterranean area and Spanish Mediterranean coast (in Spanish). Boletín Geologico y Minero, 119(1), 21–32.

    Google Scholar 

  • Jiménez-Martínez, J., García-Aróstegui, J. L., Aragón, R., Candela, L. (2010). A quasi 3D geological model of the Campo de Cartagena, SE Spain: Hydrogeological implications. Geologica Acta (in press)

  • Korom, S. F. (1992). Natural denitrification in the saturated zone: A review. Water Resources Research, 28(6), 1657–1668.

    Article  CAS  Google Scholar 

  • Lacombe, S., Sudicky, E. A., Frape, S. K., & Unger, A. J. A. (1995). Influence of a leaky boreholes on cross-formational groundwater flow and contaminant transport. Water Resources Research, 31(8), 1871–1882.

    Article  CAS  Google Scholar 

  • Larsen, D., Gentry, R. W., & Solomon, D. K. (2003). The geochemistry and mixing of leakage in a semi-confined aquifer at a municipal well field, Memphis, Tennessee, USA. Applied Geochemistry, 18, 1043–1063.

    Article  CAS  Google Scholar 

  • Lu, H. Y., Liu, T. K., Chen, W. F., Peng, T. R., Wang, C. H., Tsai, M. H., et al. (2008). Use of geochemical modeling to evaluate the hydraulic connection of aquifers: A case study from Chianan Plain, Taiwan. Hydrogeology Journal, 16, 139–154.

    Article  CAS  Google Scholar 

  • Massmann, G., Tichomirowa, M., Merz, C., & Pekdeger, A. (2003). Sulfide oxidation and sulfate reduction in a shallow groundwater system (Oderbruch Aquifer, Germany). Journal of Hydrology, 278, 231–243.

    Article  CAS  Google Scholar 

  • MIMAN. (2000). Libro Blanco del Agua en España. Spanish Ministry for the Environment.

  • Neuman, S. P., & Witherspoon, P. A. (1969). Theory of flow in a confined two aquifer system. Water Resources Research, 5(4), 803–816.

    Article  Google Scholar 

  • Parkhurst, D. L., & Appelo, C. J. L. (1999). User’s guide to PHREEQC (version 2)-A computer program for speciation, batch reaction, one-dimensional transport, and inverse geochemical calculations. U. S. Geological Service. Water Resources Investigation Report 99-4259, Denver.

  • Pitkänen, P., Löffman, J., Koskinen, L., Leino-Forsman, H., & Snellman, M. (1999). Application of mass-balance and flow simulation calculations to interpretation of mixing at Äspö, Sweden. Applied Geochemistry, 14, 893–905.

    Article  Google Scholar 

  • Pulido-Bosch, A., Bensi, S., Molina, L., Vallejos, A., Calaforra, J. M., & Pulido-Leboeuf, P. (2000). Nitrates as indicators of aquifer interconnection. Application to the Campo de Dalias (SE-Spain). Environmental Geology, 39(7), 791–799.

    Article  CAS  Google Scholar 

  • Roberston, W. D., & Schiff, S. L. (2008). Persistent elevated nitrate in riparian zone aquifer. Journal of Environmental Quality, 37, 669–679.

    Article  Google Scholar 

  • Robertson, W. D., Russell, B. M., & Cherry, J. A. (1996). Attenuation of nitrate in aquitard sediments of Southern Ontario. Journal of Hydrology, 180(1–4), 267–281.

    Article  CAS  Google Scholar 

  • Rodríguez Estrella, T. (2000). Physical, chemical and biological changes induced by waters from the Tage-Segura canal in the hydrogeological unit of the Campo de Carthagena and in Mar Menor laguna (Murcia Province, Spain). Hydrogéologie, 3, 23–37.

    Google Scholar 

  • Ronen, D., & Margaritz, M. (1985). High concentrations of solutes at upper part of the saturated zone (water table) of a deep aquifer under sewage-irrigated land. Journal of Hydrology, 80, 311–323.

    Article  CAS  Google Scholar 

  • Salama, R. B. (2005). Interconnectivity between the superficial aquifer and the deep confined aquifers of the Gnangara Mound, Western Australia. Water, Air, and Soil Pollution, 5, 27–44.

    Article  CAS  Google Scholar 

  • Starr, R. C., & Gillhma, R. W. (1993). Denitrification and organic carbon availability in two aquifers. Ground Water, 31(6), 934–947.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been developed under the framework of the CGL-2004-05963-C04-01 and CGL2007-66861-C04-03 research projects, financed by Ministry of Science and Innovation (Spain). It also is included within the 08225/PI/08 research project financed by “Programa de Generación del Conocimiento Científico de Excelencia” of Fundación Seneca, Región de Murcia (II PCTRM 2007-10). Gratitude is expressed to the Geological Survey of Spain (IGME) and to K. J. Wallis for her assistance in the revision of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jiménez-Martínez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez-Martínez, J., Aravena, R. & Candela, L. The Role of Leaky Boreholes in the Contamination of a Regional Confined Aquifer. A Case Study: The Campo de Cartagena Region, Spain. Water Air Soil Pollut 215, 311–327 (2011). https://doi.org/10.1007/s11270-010-0480-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0480-3

Keywords

Navigation