Skip to main content
Log in

Metal Uptake by Spontaneous Vegetation in Acidic Mine Tailings from a Semiarid Area in South Spain: Implications for Revegetation and Land Management

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Tailings are frequently a source of pollution in mining areas due to the spread of metals from their bare surfaces via wind or runoff water. Phytostabilization is an interesting and low-cost option to decrease environmental risks in these sites. In this study, an acidic mine tailing (pH 3–4) located in a semiarid area in Southeast Spain and the spontaneous vegetation which grow on were investigated. Soil samples were taken to characterize metal contamination, and three plant species, Lygeum spartum, Piptatherum miliaceum, and Helichrysum decumbens, were sampled in order to determine plant uptake of metals. The rhizosphere pH of H. decumbens was measured to be 6.7, which was significantly higher than the bulk soil (pH 3). The electrical conductivity values were around 2–5 dS m−1. Total metal concentrations in soil were high (9,800 mg kg−1 for Pb and 7,200 mg kg−1 for Zn). DTPA-extractable Zn and Pb were 16% and 19% of the total amount, respectively. The three selected plant species accumulated around 2–5 mg kg−1 Cu in both shoots and roots. Zn concentration was 100 mg kg−1 in P. miliaceum roots. DTPA-extractable Zn was positively correlated with Zn plant uptake. These plant species demonstrated to grow well in acid tailings taking up only low concentrations of metals and therefore are good candidates to perform further phytostabilization works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • BOE (Boletín Oficial del Estado) (2005). REAL DECRETO 9/2005, de 14 de enero, por el que se establece la relación de actividades potencialmente contaminantes del suelo y los criterios y estándares para la declaración de suelos contaminados (BOE no. 15 de 18.01.05), pp. 1833–1843.

  • Chaignon, V., Bedin, F., & Hinsinger, P. (2002). Copper bioavailability and rhizosphere pH changes as affected by nitrogen supply for tomato and oilseed rape cropped on an acidic and a calcareous soil. Plant and Soil, 243(2), 219–228.

    Article  CAS  Google Scholar 

  • Chaney, R. L. (1989). Toxic element accumulation in soils and crops: Protecting soil fertility and agricultural food-chains. In B. Bar-Yosef, N. J. Barrow, & J. Goldshmid (Eds.), Inorganic contaminants in the vadose zone (pp. 140–158). Berlin: Springer.

    Google Scholar 

  • Conesa, H. M., Faz, Á., & Arnaldos, R. (2006). Tolerant plant species to heavy metals that grow at mining tailings in the semiarid Cartagena–La Union mining district (SE Spain). The Science of the Total Environment, 36(1), 1–11.

    Google Scholar 

  • Conesa, H. M., Robinson, B. H., Schulin, R., & Nowack, B. (2007a). Growth of Lygeum spartum in acid mine tailings: Response of plants developed from seedlings, rhizomes and at field conditions. Environmental Pollution, 145(3), 700–707.

    Article  CAS  Google Scholar 

  • Conesa, H. M., Faz, Á., & Arnaldos, R. (2007b). Initial studies for the phytostabilization of a mine tailing from the Cartagena–La Union mining district (SE Spain). Chemosphere, 66(1), 38–44.

    Article  CAS  Google Scholar 

  • Conesa, H. M., García, G., Faz, Á., & Arnaldos, R. (2007c). Dynamics of metal tolerant plant communities’ development in mine tailings from the Cartagena–La Unión mining district (SE Spain) and their interest for further revegetation purposes. Chemosphere, 68(6), 1180–1185.

    Article  CAS  Google Scholar 

  • Conesa, H. M., Pérez-Chacón, J. A., Arnaldos, R., Moreno-Caselles, J., & Faz, Á. (2010). In situ heavy metal accumulation in lettuce growing near a former mining waste disposal area: Implications for agricultural management. Water, Air, and Soil Pollution, 208(1–4), 377–383.

    Article  CAS  Google Scholar 

  • Diaz, G., & Honrubia, M. (1993). Respuestas de crecimiento del albardín (Lygeum spartum L.) a la inoculación con hongos micorrícicos y a la fertilización fosforada. Cryptogamie. Mycologie, 14, 117–125.

    Google Scholar 

  • Duchaufour Ph. (1970). Précis de Pedologie. París: Masson y Cie, p. 481.

  • Fitz, W. J., & Wenzel, W. W. (2002). As transformations in the soil–rhizosphere–plant system: fundamentals and potential application to phytoremediation. Journal of Biotechnolology, 99(3), 259–278.

    Article  CAS  Google Scholar 

  • García-García, C. (2004). Impacto y riesgo medioambiental en los residuos minerometalúrgicos de la Sierra de Cartagena-La Unión, PhD thesis, Universidad Politécnica de Cartagena, Cartagena, Spain.

  • Hinsinger, P., Plassard, C., Tang, C., & Jaillard, B. (2003). Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant and Soil, 248(1–2), 43–59.

    Article  CAS  Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42, 421–428.

    Article  CAS  Google Scholar 

  • M.H.S.P.E. (Ministry of Housing, Spatial Planning and Environment) (2000). Netherlands. Circular on target values and intervention values for soil remediation. Ministry of Housing, Spatial Planning and Environment 4-2-2000.

  • Macnair, M. R. (1987). Heavy metal tolerance in plants: A model evolutionary system. Trends in Ecology & Evolution, 2(12), 354–359.

    Article  Google Scholar 

  • Martínez-Orozco, J. M., Valero-Huete, F., & González-Alonso, S. (1993). Environmental problems and proposals to reclaim the areas affected by mining exploitations in the Cartagena mountains (southeast Spain). Landscape and Urban Planning, 23(3–4), 195–207.

    Article  Google Scholar 

  • Martínez-Sánchez, M.J., Pérez-Sirvent, C. (2007). Niveles de fondo y niveles genéricos de referencia de metales pesados en suelos de la Región de Murcia. Universidad de Murcia. Región de Murcia, Consejería de Desrrollo Sostenible y Ordenación del Territorio. Murcia, Spain.

  • Martos-Miralles, P., Sansano Sánchez, A., Baños Páez, P., Navarro Cano, J. A., & Méndez Pérez, T. (2001). Medio Ambiente y Empleo en la Sierra Minera de Cartagena–La Unión. La Unión (Murcia): Edita Fundación Sierra Minera. 256 pp.

    Google Scholar 

  • Mattina, M. I., Lannucci-Berger, W., Musante, C., & White, J. C. (2003). Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environmental Pollution, 124(3), 375–378.

    Article  CAS  Google Scholar 

  • McGrath, S. P., & Zhao, F. J. (2003). Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 14(3), 277–282.

    Article  CAS  Google Scholar 

  • Melendo, M., Benítez, E., & Nogales, R. (2002). Assessment of the feasibility of endogeous Mediterranean species for phytoremediation of Pb-contaminated areas. Fresenius’ Environmental Bulletin, 11, 1105–1109.

    CAS  Google Scholar 

  • Mendez, M. O., & Maier, R. M. (2008a). Phytostabilization of mine tailings in arid and semiarid environments—An emerging remediation technology. Environmental Health Perspectives, 116(3), 278–283.

    Article  CAS  Google Scholar 

  • Mendez, M. O., & Maier, R. M. (2008b). Phytoremediation of mine tailings in temperate and arid environments. Reviews in Environmental Science & Biotechnology, 7(1), 47–59.

    Article  CAS  Google Scholar 

  • National Research Council (2003). Bioavailability of Contaminants in soils and sediments: Process, tools and applications. Washington: The National Academies. Retrieved 20 April 2006 from http://fermat.nap.edu/books/0309086256/html.

  • Norvell, W. A. (1984). Comparison of chelating agents as extractants for metals in diverse soil materials. Soil Science Society of America Journal, 48, 1285–1292.

    Article  CAS  Google Scholar 

  • Pratas, J., Prasad, M. N. V., Freitas, H., & Conde, L. (2005). Plants growing in abandoned mines of Portugal are useful for biogeochemical exploration of arsenic, antimony, tungsten and mine reclamation. Journal of Geochemical Exploration, 85(3), 99–107.

    Article  CAS  Google Scholar 

  • Simon, L. (2005). Stabilization of metals in acidic mine spoil with amendments and red fescue (Festuca rubra L.) growth. Environmental Geochemistry and Health, 27(4), 289–300.

    Article  CAS  Google Scholar 

  • Simon, M., Ortiz, I., Garcıa, I., Fernandez, E., Fernandez, J., Dorronsoro, C., et al. (1999). Pollution of soils by the toxic spill of a pyrite mine (Aznalcollar, Spain). The Science of the Total Environment, 242(1–3), 105–115.

    Article  CAS  Google Scholar 

  • Sims, J.T., Johnson, G.V. (1991). Micronutrients soil tests. In J.J. Mortvedt, F.R. Cox, L.M. Shuman, R.M. Welch (Eds.), Micronutrients in agriculture, 2nd edn. (pp. 427–476). Soil Science Society of America, Book Series no. 4 Inc. Madison, Wisconsin, USA.

  • Tordoff, G. M., Baker, A. J. M., & Willis, A. J. (2000). Current approaches to the revegetation and reclamation of metalliferous wastes. Chemosphere, 41(1–2), 219–228.

    Article  CAS  Google Scholar 

  • Unterbrunner, R., Wieshammer, G., Hollender, U., Felderer, B., Wieshammer-Zivkovic, M., Puschenreiter, M., et al. (2007). Plant and fertiliser effects on rhizodegradation of crude oil in two soils with different nutrient status. Plant and Soil, 300(1–2), 117–126.

    Article  CAS  Google Scholar 

  • Wang, Z., Shan, X. Q., & Zhang, S. (2002). Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soils. Chemosphere, 46(8), 1163–1171.

    Article  CAS  Google Scholar 

  • Wei, C. Y., Wang, C., & Yang, L. S. (2009). Characterizing spatial distribution and sources of heavy metals in the soils from mining–smelting activities in Shuikoushan, Hunan Province, China. Journal of Environmental Sciences, 21(9), 1230–1236.

    Article  CAS  Google Scholar 

  • Wenzel, W. W. (2009). Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant and Soil, 321(1–2), 385–408.

    Article  CAS  Google Scholar 

  • Wong, M. H. (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50(6), 775–780.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Fundacion Seneca of Comunidad Autónoma de la Región de Murcia for financial support and Gregorio García, Juan Marcos Andreu, and Raquel Arnaldos for their help in sampling. Also, we want to thank Dr. Ripolles for the help in English typing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor M. Conesa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conesa, H.M., Faz, Á. Metal Uptake by Spontaneous Vegetation in Acidic Mine Tailings from a Semiarid Area in South Spain: Implications for Revegetation and Land Management. Water Air Soil Pollut 215, 221–227 (2011). https://doi.org/10.1007/s11270-010-0471-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0471-4

Keywords

Navigation