Skip to main content
Log in

Genetic Analysis of Black Spruce (Picea mariana) Populations from Dry and Wet Areas of a Metal-Contaminated Region in Ontario (Canada)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Genetic variation and genetic structure of black spruce (Picea mariana L.) populations growing in wet land (lowlands) and dry lands (uplands) with different levels of metal contaminations were analyzed using ISSR. Polymorphic loci (P%) ranged from 65% to 90% with a mean of 75%. Nei’s gene diversity (h) varied from 0.264 to 0.359 with a mean of 0.310, and Shannon’s index (I) ranged from 0.381 to 0.524 with a mean of 0.449. The level of genetic variation was higher in populations from wet lands than those from dry lands. Variation within populations accounts for most of total genetic variation. The genetic distance among the black spruce (P. mariana) populations ranged from 0.171 to 0.351. The present study indicates that genetic variation and long-term exposure to metals (more than 30 years) are not associated. Cytological analysis of black spruce seeds from metal-contaminated and -uncontaminated areas showed normal mitotic behavior during prophase, metaphase, anaphase, and telophase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amiro, B. D., & Courtin, G. M. (1981). Patterns of vegetation in the vicinity of an industrially disturbed ecosystem, Sudbury, Ontario. Canadian Journal of Botany, 59, 1623–1639.

    Google Scholar 

  • Armstrong, J.S., Gibbs, A.J., Peakall, R., Weiller, G. 1. (1994). The RAPDistance Package. 2005, may/20, 30

  • Cox, R. M., & Hutchinson, T. C. (1980). Multiple metal tolerances in the grass Deschampsia cespitosa (L.) Beauv. From the Sudbury smelting area. The New Phytologist, 84, 631–647.

    Article  CAS  Google Scholar 

  • De Verno, L., & Mosseler, A. (1997). Genetic variation in red pine (Pinus resinosa) revealed by RAPD–RFLP analysis. Canadian Journal of Forest Research, 27, 1316–1320.

    Google Scholar 

  • Gordon, A. G. (1976). The taxonomy and genetic of Picea rubens and its relationships to Picea mariana. Canadian Journal of Botany, 54, 781–813.

    Article  Google Scholar 

  • Gratton, W. S., Nkongolo, K. K., & Spiers, G. A. (2000). Heavy metal accumulation in Soil and jack pine (Pinus banksiana) needles in Sudbury, Ontario, Canada. Bulletin of Environmental Contamination and Toxicology, 64, 550–557.

    Article  CAS  Google Scholar 

  • Freedman, B., & Hutchison, T. C. (1980). Pollutants inputs from atmosphere and accumulations in soils and vegetation near a nickel-copper smelter at Sudbury, Ontario, Canada. Canadian Journal of Botany, 58, 108–131.

    CAS  Google Scholar 

  • Foy, C. D., Chaney, R. L., & White, M. C. (1978). The physiology of metal toxicology in plants. Annu Rev Plant Physiol, 29, 11–566.

    Article  Google Scholar 

  • Lopes, I., Baird, D. J., & Ribeiro, R. (2004). Genetic determination of tolerance to lethal and sublethal copper concentrations in field populations of Daphnia longispina. Archives of Environmental Contamination and Toxicology, 46, 43–51.

    Article  CAS  Google Scholar 

  • Mosseler, A., & Rajora, O. P. (1998). Monitoring population viability in declining tree species using indicators of genetic diversity and reproductive success. In K. Sassa (Ed.), Environmental forest science (pp. 333–344). Dordrecht: Kluwer.

    Google Scholar 

  • Nagaoka, T., & Ogihara, Y. (1997). Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theoretical and Applied Genetics, 94, 597–602.

    Article  CAS  Google Scholar 

  • Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America, 70, 3321–3323.

    Article  CAS  Google Scholar 

  • Nkongolo, K. K., & Klimaszewska, K. (1995). Cytological and molecular characterization of Larix decidua, L. leptolepis, and L. x eurolepis: identification of species specific chromosomes and enhancement of mitotic index. Theoretical and Applied Genetics, 90, 827–834.

    Article  CAS  Google Scholar 

  • Nkongolo, K. K. (1999). RAPD variations among pure and hybrid populations of Picea mariana, P. rubens, and P. glauca (Pinaceae), and cytogenetic stability of Picea hybrids: identification of species – specific RAPD markers. Plant Systematics and Evolution, 215, 229–239.

    Article  Google Scholar 

  • Nkongolo, K. K., Deverno, L., & Michael, P. (2003). Genetic validation and characterization of RAPD markers differentiating black and red spruces: molecular certification of spruce trees and hybrids. Plant Systematics and Evolution, 236, 151–163.

    Article  CAS  Google Scholar 

  • Nkongolo, K. K., Michael, P., & Demers, T. (2005). Application of ISSR, RAPD, and cytological markers to the certification of Picea mariana, P. glauca, and P. engelmannii trees, and their putative hybrids. Genome, 48, 302–311.

    CAS  Google Scholar 

  • Nkongolo, K. K., Vaillancourt, A., Dobrzeniecka, S., Mehes, M., & Beckett, P. (2008). Metal content in soil and black spruce (Picea mariana) trees in the Sudbury Region (Ontario, Canada): low concentration of arsenic, cadmnium, and nickel detected near smelter sources. Bulletin of Environmental Contamination and Toxicology, 80, 107–111.

    Article  CAS  Google Scholar 

  • Ontario Ministry of Natural Resources. (2001). Critical review of historical and current tree planting progras on private lands in Ontario. Pp. 42.

  • O’Reilly, G. J., Parker, W. H., & Cheliak, W. M. (1985). Isozyme differentiation of upland and lowland Picea mariana stands in Northern Ontario. Silvae Genet, 34(6), 214–221.

    Google Scholar 

  • Perry, J., & Bousquet, J. (2001). Genetic diversity and mating system of post-fire and post-harvest black spruce: an investigation using codominant sequence-tagged-site (STS) markers. Canadian Journal of Forest Research, 31, 32–41.

    Article  Google Scholar 

  • Perron, M., & Bousquet, J. (1997). Natural hybridization between black spruce and red spruce. Molecular Ecology, 6, 725–734.

    Article  Google Scholar 

  • Prus-Glowacki, W., Chudzinska, E., Wojnicka-Poltorak, A., Kozacki, L., & Fagiewicz, K. (2006). Effects of heavy metal pollution on genetic variation and cytological disturbances in the Pinus sylvestris L. population. Journal of Applied Genetics, 47(2), 99–108.

    Article  Google Scholar 

  • Rajora, O. P., Mosseler, A., & Major, J. E. (2000). Indicators of population variability in red spruce, Picea rubens. II Genetic diversity, population structure, and mating behavior. Canadian Journal of Botany, 78, 941–956.

    Article  Google Scholar 

  • Rajora, O.P, Mosseler, A. (2001a). Molecular markers in sustanaible management, conservation, and restoration of forest genetic resources. In: Muller-Starck G., Schubert R. (Eds), Genetic response of forest systems to changing environmental conditions. Volume 70. (pp. 187-201). Kluwer.

  • Rajora, O. P., & Mosseler, A. (2001b). Challenges and opportunities for conservation of forest genetic resources. Euphytica, 118, 197–212.

    Article  Google Scholar 

  • Rajora, O. P., & Pluhar, S. A. (2003). Genetic diversity impact of forest fires, forest harvesting, and alternative reforestation practices in black spruce (Picea mariana). Theoretical and Applied Genetics, 106, 1203–1212.

    CAS  Google Scholar 

  • Saitou, N., Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol, 406–425.

  • Van Straalen, N. M., & Timmermans, M. J. T. N. (2002). Genetic variation in toxicant-stressed populations: an evaluation of the “genetic erosion” hypothesis. Human Ecology and Risk Assessment, 8, 983–1002.

    Article  Google Scholar 

  • Yeh, F., Yang, R., & Boyle, T. (1997). Popgene, version 1.32 edition, software Microsoft Window-based freeware for population genetic analysis. Edmoton: University of Alberta.

    Google Scholar 

Download references

Acknowledgments

We express our appreciation to the Natural Sciences and Engineering Research Council of Canada (NSERC), Vale INCO Limited and Xstrata Nickel Limited for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kabwe K. Nkongolo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobrzeniecka, S., Nkongolo, K.K., Michael, P. et al. Genetic Analysis of Black Spruce (Picea mariana) Populations from Dry and Wet Areas of a Metal-Contaminated Region in Ontario (Canada). Water Air Soil Pollut 215, 117–125 (2011). https://doi.org/10.1007/s11270-010-0463-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0463-4

Keywords

Navigation