Skip to main content
Log in

Metals in Waters and Sediments of the Morrocoy National Park, Venezuela: Increased Contamination Levels of Cadmium over Time

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Concentrations of heavy metals in the western coast of Venezuela are partly driven by anthropogenic influences. To detect metal changes over time, the waters and sediments from 19 sites, across various marine ecosystems, were sampled seven times between 2000 and 2001 and compared with previous studies. The water samples had mean concentrations of Cd, Cu, Pb, and Zn above the guideline values proposed by NOAA as capable of producing chronic effects in the marine biota. In sediments, the mean Cd concentration also exceeded NOAA’s Effects Range–Low values for all habitat types, and in sheltered sites, it exceeded NOAA’s Effects Range–Median values. The meta-analysis indicated that metal concentrations in water were higher in 2000–2001 than in 1995–1997, with the exception of Pb. In sediments, however, only the concentrations of Cd, Cu, and Pb increased in this period. This increase was particularly noticeable for Cd which, by 2000–2001, showed Igeo values indicating that Morrocoy National Park could be considered strongly to extremely polluted. This increment in the metal concentrations could be associated with: (1) an anomalous precipitation event that occurred at the end of 1999 and which caused a disturbance in the sediment chemistry of most metals and/or (2) an increase in the anthropogenic and natural input of Cd probably associated with the production of fertilizers in the region during the period analyzed. Special attention should be paid to Cd levels in this area as it represents a high toxicological risk for the biota in different habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • APHA, AWWA, WPCF. (1992). Standard methods for examination of water and wastewater. New York, USA: American Public Health Association, 1134 pp.

  • Appleton, J.D., Notholt, A.J.G. (2002). Local phosphate resources for sustainable development in Central and South America. British Geological Survey Report, CR/02/122/N, 96 pp.

  • Arain, M. B., Kazi, T. G., Jamali, M. K., Jalbani, N., Afridi, A., & Shah, H. I. (2008). Total dissolved and bioavailable elements in water and sediment samples and their accumulation in Oreochromis mossambicus of polluted Manchar Lake. Chemosphere, 70, 1845–1856.

    Article  CAS  Google Scholar 

  • Bastidas, C., Bone, D., & García, E. (1999). Sedimentation rate and metal content in sediments at a Venezuelan reef (Parque Nacional Morrocoy). Marine Pollution Bulletin, 38, 16–24.

    Article  CAS  Google Scholar 

  • Buchman, M.F. (2008). NOAA screening quick reference tables. NOAA OR&R Report 08-1 Seattle W.A. Office of Response and Restoration Division, National Oceanic and Atmospheric Administration, 34 pp.

  • Caldera, Y., Gutiérrez, E., & Polanco, D. (2005). Análisis de metales en aguas y sedimentos del Parque Nacional Morrocoy aplicando métodos estadísticos multivariantes. Ciencia, 13, 449–463.

    CAS  Google Scholar 

  • Casanova, E. O. (2001). Evaluating the effectiveness of phosphate fertilizers: Phosphate rock use and related technologies in Venezuela. In: S. S. S. Rajan & S. H. Chien (Eds.), Direct application of phosphate rock and related appropriate technology: Latest developments and practical experiences. Proceedings of an International Meeting IFDC, MSSS, PPI/PPIC, Kuala Lumpur, Malaysia.

  • CDMHA (Center for Disaster Management and Humanitarian Assistance). (2000). Richard Tichauer UNDP, slide presentation No. 23-1520. Retrieved 28 January 2009 from http://www.cdmha.org/interhands/speaker_pages/tichauer.htm.

  • Chollett, I., & Bone, D. (2007). Effects of heavy rainfall on polychaetes: Differential spatial patterns generated by a large-scale disturbance. Journal of Experimental Marine Biology and Ecology, 340, 113–125.

    Article  Google Scholar 

  • Chun-Gang, Y., Jian-bo, S., Bin, H., Jing-fu, L., Li-Na, L., & Gui-bin, J. (2004). Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environmetal International, 30, 769–783.

    Article  Google Scholar 

  • Cibic, T., Acquavita, A., Aleffi, F., Bettoso, N., Blasutto, O., De Vittor, C., et al. (2008). Integrated approach to sediment pollution: A case study in the Gulf of Trieste. Marine Pollution Bulletin, 56, 650–1667.

    Article  Google Scholar 

  • Davidson, C. M., Thomas, R. P., McVey, S. E., Perala, R., Littlejohn, D., & Ure, A. M. (1994). Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments. Analytica Chimica Acta, 291, 277–286.

    Article  CAS  Google Scholar 

  • Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. G. (2008). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. The Science of the Total Environment, 407, 3972–3985. doi:10.1016/j.scitotenv.2008.07.025.

    Google Scholar 

  • Elder, J.F. (1989). Metal biogeochemistry in surface-water systems—A review of principles and concepts. US Geological Survey Circular 1013, 43 pp.

    Google Scholar 

  • Fang, T. H., & Hong, E. (1999). Mechanisms influencing the spatial distribution of trace metals in surficial sediments off the south-western Taiwan. Marine Pollution Bulletin, 38, 1026–1037.

    Article  CAS  Google Scholar 

  • Fayard, C. H., & Truong B. (1990). Caracterisation des phosfates naturels du Venezuela. Mise au point des engraines pour essais agronomiques. CIRAT-IRAT-TECHNIFERT. S.A, 168 pp.

  • FUDENA (Fundación para la Defensa de la Naturaleza). (2005). Las vaguadas y sus afecciones. Retrieved 28 January 2009 from http://www.fudena.org.ve/ecosteno8.pdf.

  • García, E. M., Cruz-Motta, J. J., Farina, O., & Bastidas, C. (2008). Anthropogenic influences on heavy metals across marine habitats in the western coast of Venezuela. Continental Shelf Research, 28, 2757–2766.

    Article  Google Scholar 

  • Gavriil, A. M., & Angelidis, M. O. (2005). Metal and organic carbon distribution in water column of a shallow enclosed Bay at the Aegean Sea Archipelago: Kalloni Bay, island of Lesvos, Greece. Estuarine, Coastal and Shelf Science, 64, 200–210.

    Article  CAS  Google Scholar 

  • Hargrave, B. T., Holmer, M., & Newcombe, C. P. (2008). Towards a classification of organic enrichment in marine sediments based on biogeochemical indicators. Marine Pollution Bulletin, 56, 810–824.

    Article  CAS  Google Scholar 

  • He, Z. L., Yanga, X. E., & Stoffella, P. J. (2005). Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology, 19, 125–140.

    Article  CAS  Google Scholar 

  • Iglesias, N., & Penchaszadeh, P. (1983). Mercury in sea stars from Golfo Triste, Venezuela. Marine Pollution Bulletin, 14, 396–398.

    Article  CAS  Google Scholar 

  • Jaffé, R., Leal, I., Alvarado, J., Gardinali, P. R., & Sericano, J. L. (1998). Baseline study on the levels of organic pollutants and heavy metals in bivalves from the Morrocoy National Park, Venezuela. Marine Pollution Bulletin, 36, 925–929.

    Article  Google Scholar 

  • Jarvis, I., Burnett, W., Nathan, J., Almabaydin, F., Attia, A., Castro, L., et al. (1994). Phosphorites geochemistry. State of the art environmental concern. Eclogae Geologiae Helvitiae Journal of Swiss Geologicae Society, 87, 43–70.

    Google Scholar 

  • Kalnejais, L. H., Martin, W. R., Signell, R. P., & Bothner, M. H. (2007). Role of sediment resuspension in the remobilization of particulate-phase metals from coastal sediments. Environmental Science & Technology, 41, 2282–2288.

    Article  CAS  Google Scholar 

  • Kraepiel, A. M., Chiffoleau, J. F., Martin, J. M., & Morel, F. M. (1997). Geochemistry of trace metals in the Gironde estuary. Geochimica et Cosmochimica Acta, 61, 1421–1436.

    Article  CAS  Google Scholar 

  • Lee, M., Bae, W., Chung, J., Jung, H., & Shim, H. (2008). Seasonal and spatial characteristics of seawater and sediment at Youngil bay, Southeast Coast of Korea. Marine Pollution Bulletin, 57, 325–334.

    Article  CAS  Google Scholar 

  • Loring, D. H., & Rantala, R. T. T. (1992). Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth Science Reviews, 32, 235–283.

    Article  CAS  Google Scholar 

  • Manfra, L., & Accornero, A. (2005). Trace metal concentrations in coastal marine waters of the central Mediterranean. Marine Pollution Bulletin, 50, 682–697.

    Article  Google Scholar 

  • Martín, A. (2005). Evaluación de los Parámetros ambientales y de la calidad de aguas en el Parque Nacional Morrocoy y zonas aledañas. In: D. Bone (Ed.), Estudio Integral del Sistema Parque Nacional Morrocoy con vías al desarrollo de planes de uso y gestión para su conservación: Informe Final (pp. 159–239). USB-UCV-UNEFM-INIA-FONACIT. Caracas, Venezuela, 938 pp.

  • Martin, J. M., & Maybeck, M. (1979). Elemental mass-balance of material carried by major world rivers. Marine Chemistry, 7, 173–206.

    Article  CAS  Google Scholar 

  • McLaughlin, M. J., Mair, N. A., Freeman, K., Tiller, K. G., Williams, C. M. J., & Smart, M. K. (1995). Effect of potassic and phosphatic fertilizer type, fertilizer Cd concentration and zinc rate on cadmium uptake by potatoes. Fertilizer Research, 40, 63–70.

    Article  CAS  Google Scholar 

  • Mortved, J. J. (1996). Heavy metal contaminants in inorganic and organic fertilizers. Fertilizer Research, 43, 55–61.

    Article  Google Scholar 

  • Muller, G. (1981). Die Schwermetallbelastung der sedimente des Neckars und seiner Nebenflusse: eine Bestandsaufnahme. Chemical Zeitung, 105, 157–164.

    Google Scholar 

  • Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water, and soils by trace metals. Nature, 333, 134–139.

    Article  CAS  Google Scholar 

  • Nziguheba, G., & Smolders, E. (2008). Inputs of trace elements in agricultural soils via phosphate fertilizers in Europe countries. The Science of the Total Environment, 390, 53–57.

    Article  CAS  Google Scholar 

  • Pekey, H. (2006). The distribution and sources of heavy metals in Izmit Bay surface sediments affected bay polluted stream. Marine Pollution Bulletin, 52, 1197–1208.

    Article  CAS  Google Scholar 

  • Poikäne, R., Carsten, J., Dahllof, I., & Aigars, J. (2005). Distribution patterns of particulate trace metals in the water column and nephloid layer of the Gulf of Riga. Chemosphere, 60, 216–225.

    Article  Google Scholar 

  • Santschi, P. H., Anderson, R. F., Fleisher, M. Q., & Bowler, W. (1991). Measurements of diffusive sublayer thicknesses in the ocean by alabaster dissolution, and their implications for the measurements of benthic fluxes. Journal of Geophysical Research, 96, 10641–10657.

    Article  Google Scholar 

  • Solana, P., Castellanos, B., & Nalesso, M. (2004). Measurement of hydrodynamic and environmental variables in Morrocoy, Venezuela. Revista Técnica, Facultad de Ingeniería, Universidad del Zulia, 27, 100–113.

    Google Scholar 

  • Soto-Jiménez, M. F., & Páez-Osuna, F. (2001). Distribution and normalization of heavy metal concentrations in mangrove and lagoonal sediments from Mazatlán harbor (SE Gulf of California). Estuarine, Coastal and Shelf Science, 53, 259–274.

    Article  Google Scholar 

  • Soto-Jiménez, M. F., Páez-Osuna, F., & Ruiz-Fernández, A. C. (2003). Geochemical evidences of the anthropogenic alteration of trace metal composition of the sediments of Chiricahueto marsh (SE Gulf of California). Environmental Pollution, 125, 423–432.

    Article  Google Scholar 

  • Srinivasa Reddy, M., Basha, S., Joshi, H. V., & Ramachandraiah, G. (2005). Seasonal distribution and contamination levels of total PHCs, PAHs and heavy metals in coastal waters of the Alang–Sosiya ship scrapping yard, Gulf of Cambay, India. Chemosphere, 61, 1587–1593.

    Article  CAS  Google Scholar 

  • Taylor, S. R. (1964). Abundance of chemical elements in the continental crust: A new table. Geochimica et Cosmochimica Acta, 28, 1273–1285.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P., & Brisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analitical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Thomas, R. P., Ure, A. M., Davidson, C. M., Littlejohn, D., Rauret, G., Rubio, R., et al. (1994). Three-stage sequential extraction procedure for the determination of metals in river sediments. Analytical Chemical Acta, 286, 423–429.

    Article  CAS  Google Scholar 

  • Turekian, K. K., & Wedepol, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72, 175–191.

    Article  CAS  Google Scholar 

  • US EPA (Environmental Protection Agency) (1991a). Method 200.9: Determination of trace elements by stabilized temperature graphite furnace atomic absorption spectrometry. Revision 1.2. p. 123. In: Methods for the determination of metals in environmental samples. Report No. EPA-600/4-91-010.

  • US EPA (Environmental Protection Agency) (1991b). Method 245.1: Determination of mercury in water by cold vapor atomic absorption spectrometry. Revision 2.3. p. 227. In: Methods for the determination of metals in environmental samples. Report No. EPA-600/4-91-010.

  • US EPA (Environmental Protection Agency) (1991c). Method 245.5: Determination of mercury in sediment by cold vapor atomic absorption spectrometry. Revision 2.3. p 267. In: Methods for the determination of metals in environmental samples. Report No. EPA-600/4-91-010.

  • Zwolsman, J. G., Berger, W. G., & VanEck, E. T. (1993). Sediment accumulation rates, historical inputs post depositional mobility and retention of major elements and trace metals in salt marsh sediments of the Scheldt estuary. Marine Chemistry, 44, 73–94.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by a grant awarded by FONACIT Agenda Morrocoy Project; Part II: Metals. Subproject 96001837-I. We also would like to thank Frances Osborn, Ruth Ramos, and Héctor Guzmán who reviewed earlier vesions of this manuscript and all the volunteers that participated in the sampling campaigns.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. García.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García, E.M., Bastidas, C., Cruz-Motta, J.J. et al. Metals in Waters and Sediments of the Morrocoy National Park, Venezuela: Increased Contamination Levels of Cadmium over Time. Water Air Soil Pollut 214, 609–621 (2011). https://doi.org/10.1007/s11270-010-0450-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0450-9

Keywords

Navigation