Skip to main content
Log in

Photodegradation of Bisphenol A by Titana Nanoparticles in Mesoporous MCM-41

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Photocatalytic degradation of bisphenol A (2,2-bis(4-hydroxyphenyl)propane, BPA), a representative endocrine-disrupting compound, was carried out in the presence of the Ti-MCM-41 mesoporous molecular sieve in this investigation. The degradation rate was strongly dependent on those factors such as the catalyst, catalyst amount, radiation time, and pH value. The photolysis reaction was found to follow the Langmuir–Hinshelwood model. After the photocatalytic treatment, decomposition of BPA rendered five intermediates as follows: 2-methyl-2,3-dihydrobenzofuran, 4-hydroxyacetophenone, 1,1-diethoxyethane, isobutanol, and 3-methylbutanal, which could be the direct evidence supporting our proposal for the degradation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akpan, U. G., & Hameed, B. H. (2009). Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. Journal of Hazardous Materials, 170, 520–529.

    Article  CAS  Google Scholar 

  • Alba, M. D., Luan, Z., & Klinowski, J. (1996). Titanosilicate mesoporous molecular sieve MCM-41: Synthesis and characterization. The Journal of Physical Chemistry, 100, 2178–2182.

    Article  CAS  Google Scholar 

  • Fukahori, S., Ichiura, H., Kitaoka, T., & Tanaka, H. (2003). Capturing of bisphenol A photodecomposition intermediates by composite TiO2–zeolite sheets. Applied Catalysis. B: Environmental, 46, 453–462.

    Article  CAS  Google Scholar 

  • Furhacker, M., Weber, H., & Scharf, S. (2000). Bisphenol A: Emissions from point sources. Chemosphere, 41, 751–756.

    Article  CAS  Google Scholar 

  • Gültekin, I., & Ince, N. H. (2007). Synthetic endocrine disruptors in the environment and water remediation by advanced oxidation processes. Journal of Environmental Management, 85, 816–832.

    Article  Google Scholar 

  • Horikoshi, S., Kajitani, M., & Serpone, N. (2007). The microwave-/photo-assisted degradation of bisphenol-A in aqueous TiO2 dispersions revisited: Re-assessment of the microwave non-thermal effect. Journal of Photochemistry and Photobiology. A: Chemistry, 188, 1–4.

    Article  CAS  Google Scholar 

  • Hu, Y., Nagai, Y., Rahmawaty, D., Wei, C. H., & Anpo, M. (2008). Characteristics of the photocatalytic oxidation of methane into methanol on V-containing MCM-41 catalysts. Catalysis Letters, 124, 80–84.

    Article  CAS  Google Scholar 

  • Ikeda, K., Kawamura, Y., Yamamoto, T., & Iwamoto, M. (2008). Effectiveness of the template-ion exchange method for appearance of catalytic activity of Ni-MCM-41 for the ethene to propene reaction. Catalysis Communications, 9, 106–110.

    Article  CAS  Google Scholar 

  • Ioan, I., Wilson, S., Lundanes, E., & Neculai, A. (2007). Comparison of Fenton and sono-Fenton bisphenol A degradation. Journal of Hazardous Materials, 142, 559–563.

    Article  CAS  Google Scholar 

  • Ismail, A. A., Ibrahim, I. A., Ahmed, M. S., Mohamed, R. M., & El-Shall, H. (2004). Sol–gel synthesis of titania–silica photocatalyst for cyanide photodegradation. Journal of Photochemistry and Photobiology. A: Chemistry, 163, 445–451.

    Article  CAS  Google Scholar 

  • Kim, S. B., & Sung, C. H. (2002). Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst. Applied Catalysis B: Environmental, 35, 305–315.

    Article  Google Scholar 

  • Li, F. B., Li, X. Z., & Li, X. M. (2007). Heterogeneous photodegradation of bisphenol A with iron oxides and oxalate in aqueous solution. Journal of Colloid and Interface Science, 311, 481–490.

    Article  Google Scholar 

  • Liu, Y. X., Deng, L., Chen, Y., Wu, F., & Deng, N. S. (2007). Simultaneous photocatalytic reduction of Cr(VI) and oxidation of bisphenol A induced by Fe(III)–OH complexes in water. Journal of Hazardous Materials, 139, 399–402.

    Article  CAS  Google Scholar 

  • Mohamed, R. M., Ismail, A. A., Othman, I., & Ibrahima, I. A. (2005). Preparation of TiO2–ZSM-5 zeolite for photodegradation of EDTA. Journal of Molecular Catalysis A: Chemical, 238, 151–157.

    Article  CAS  Google Scholar 

  • Ohko, Y., Ando, I., Niwa, C., Ttsuma, T., Yamamura, T., Nakashima, T., et al. (2001). Degradation of bisphenol A in water by TiO2 photocatalyst. Environmental Science Technology, 35, 2365–2368.

    Article  CAS  Google Scholar 

  • Perego, C., Angelis, A., Carati, A., Flego, C., Millini, R., Rizzo, C., et al. (2006). Amorphous aluminosilicate catalysts for hydroxyalkylation of aniline and phenol. Applied Catalysis. A: General, 307, 128–136.

    Article  CAS  Google Scholar 

  • Phanikrishna Sharma, M. V., Durga Kumari, V., & Subrahmanyam, M. (2008). Photocatalytic degradation of isoproturon herbicide over TiO2/Al-MCM-41 composite systems using solar light. Chemosphere, 72, 644–651.

    Article  CAS  Google Scholar 

  • Puma, G. L., Bono, A., Krishnaiah, D., & Collin, J. G. (2008). Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: A review paper. Journal of Hazardous Materials, 157, 209–219.

    Article  Google Scholar 

  • Rincon, A. G., & Pulgarin, C. (2004). Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2: Implications in solar water disinfection. Applied Catalysis B: Environmental, 51, 283–302.

    Article  CAS  Google Scholar 

  • Sadjadi, M. S., Farhadyar, N., & Zare, K. (2009). Synthesis of nanosize MCM-41 loaded with TiO2 and study of its photocatalytic activity. Superlattices and Microstructures, 46, 266–271.

    Article  CAS  Google Scholar 

  • Scully, C., Collins, G., & O'Flaherty, V. (2006). Anaerobic biological treatment of phenol at 9.5–15°C in an expanded granular sludge bed (EGSB)-based bioreactor. Water Research, 40, 3737–3744.

    Article  CAS  Google Scholar 

  • Shen, S. H., & Guo, L. J. (2007). Hydrothermal synthesis, characterization, and photocatalytic performances of Cr incorporated, and Cr and Ti co-incorporated MCM-41 as visible light photocatalysts for water splitting. Catalysis Today, 129, 414–420.

    Article  CAS  Google Scholar 

  • Tang, W. Z., & Huang, C. P. (1995). Photocatalyzed oxidation pathways of 2,4-dichlorophenol by CdS in basic and acidic aqueous solutions. Water Research, 29, 745–756.

    Article  CAS  Google Scholar 

  • Tsumura, R., Higashimoto, S., Matsuoka, M., Yamashita, H., Che, M., & Anpo, M. (2004). Investigations on the photoluminescence properties of Mo-MCM-41 and the photocatalytic decomposition of NO in the presence of CO. Catalysis Letters, 68, 101–103.

    Article  Google Scholar 

  • Wang, Y. C., Liu, Q. K., & Zhao, Q. X. (2006). Biological treatment principles of bisphenol A by activated sludge. Journal of East China University of Science and Technology (Natural Science Edition), 32, 1072–1075.

    CAS  Google Scholar 

  • Wang, X. L., Wu, G. D., Li, J. P., Wei, W., & Sun, Y. H. (2007). Selective oxidation of benzyl alcohol catalyzed by Cr (salen) complexes immobilized on MCM-41. Journal of Molecular Catalysis. A: Chemical, 276, 86–94.

    Article  CAS  Google Scholar 

  • Xie, Y. B., & Li, X. Z. (2006). Degradation of bisphenol A in aqueous solution by H2O2-assisted photoelectrocatalytic oxidation. Journal of Hazardous Materials, 138, 526–533.

    Article  CAS  Google Scholar 

  • Xu, B., Gao, N. Y., Rui, M., Wang, H., & Wu, H. H. (2007). Degradation of endocrine disruptor bisphenol A in drinking water by ozone oxidation. Frontiers of Environmental Science & Engineering in China, 1, 294–299.

    Google Scholar 

  • Zeng, G. M., Zhang, C., Huang, G. H., Yu, J., Wang, Q., Li, J. B., et al. (2006). Adsorption behavior of bisphenol A on sediments in Xiangjiang River, central-south China. Chemosphere, 65, 1490–1499.

    Article  CAS  Google Scholar 

  • Zhang, W., Zou, L., & Wang, L. (2009). Photocatalytic TiO2/adsorbent nanocomposites prepared via wet chemical impregnation for wastewater treatment: A review. Applied Catalysis A: General, 371, 1–9.

    Article  Google Scholar 

Download references

Acknowledgments

The study is supported by the Natural Science Foundation of Shanghai, China (grant no. 10ZR1421300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Chang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Figure S1

Initial reaction rate of BPA photocatalytic degradation versus initial BPA concentration (pH 7; catalyst amount, 0.1 g/L) (GIF 76 kb)

High resolution image (EPS 341 kb)

Figure S2

GC–MS total ion chromatograms of BPA degradation product (GIF 249 kb)

High resolution image (TIFF 1197 kb)

Figure S3

Mass spectra of five authentic compounds (GIF 509 kb)

High resolution image (TIFF 5079 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, H., Hao, S., Chang, F. et al. Photodegradation of Bisphenol A by Titana Nanoparticles in Mesoporous MCM-41. Water Air Soil Pollut 214, 491–498 (2011). https://doi.org/10.1007/s11270-010-0440-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0440-y

Keywords

Navigation