Skip to main content
Log in

Differences in Ozone Sensitivity at Different NPK Levels of Three Tropical Varieties of Mustard (Brassica campestris L.): Photosynthetic Pigments, Metabolites, and Antioxidants

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The effects of ambient O3 at two different levels of nitrogen, phosphorus, and potassium, (recommended and 1.5 times the recommended NPK) on three tropical varieties of mustard (Brassica campestris L. var. Kranti, Aashirwad and Vardan) were explored to unravel the mechanism of protection under higher NPK level at a rural experimental site using open top chambers. Ambient O3 concentrations ranged from 27.7 to 59.04 ppb. Lipid peroxidation, antioxidative enzymes, and metabolites were higher, whereas photosynthetic pigments and protein were lower in all the varieties of mustard grown in non-filtered chambers than in filtered chambers. The magnitude of response varied with varieties, NPK levels and ages. Vardan showed a maximum stimulation in the antioxidative defense system, thus efficient scavenging of ROS produced by O3 and consequently conferred greater tolerance in terms of least reductions in pigments and protein as compared to Kranti and Aashirwad. The antioxidant defense system was not stimulated in response to 1.5 times the recommended NPK, but higher levels of pigments and protein were maintained compared to the recommended NPK under ambient O3 levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

OTCs:

Open top chambers

NFCs:

Non-filtered chambers

FCs:

Filtered chambers

OPs:

Open plots

O3 :

Ozone

ppb:

Parts per billion

RNPK:

Recommended NPK

1.5 RNPK:

1.5 times recommended NPK

APX:

Ascorbate peroxidase

SOD:

Superoxide dismutase

POD:

Peroxidase

MDA:

Malondialdehyde

LPO:

Lipid peroxidation

AsA:

Ascorbic acid

ROS:

Reactive oxygen species

DAG:

Days after germination

References

  • Ashmore, M. R. (2005). Assessing the future global impact of ozone on vegetation. Plant, Cell & Environment, 28, 949–964.

    Article  CAS  Google Scholar 

  • Bark, P., & Chein, Y. (1983). Effect of potassium fertilization on iron deficiency. Communications in Soil Science and Plant Analysis, 14, 945–950.

    Article  Google Scholar 

  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  • Bielenberg, D. G., Lynch, J. P., & Pell, E. J. (2001). A decline in nitrogen availability affects plant responses to ozone. The New Phytologist, 151, 413–425.

    Article  CAS  Google Scholar 

  • Biswas, D. K., Xu, H., Li, Y. G., Sun, J. Z., Wang, X. Z., Han, X. G., et al. (2008). Genotypic differences in leaf biochemical, physiological and growth responses to ozone in 20 winter wheat cultivars released over the past 60 years. Global Change Biology, 14, 46–59.

    Google Scholar 

  • Bortier, K., Dekelever, G., De Temmerman, L., & Ceulemans, R. (2001). Stem injection of Populus nigra with EDU to study ozone effects under field conditions. Environmental Pollution, 111, 199–208.

    Article  CAS  Google Scholar 

  • Bray, H. G., & Thorpe, W. Y. (1954). Analysis of phenolic compounds on interest in metabolism. In D. Glick (Ed.), Methods of biochemical analysis (vol. I, pp. 27–52). New York: Interscience Publishers.

    Chapter  Google Scholar 

  • Britton, C., & Mehley, A. C. (1955). Assay of catalase and peroxidase. In S. P. Colowick & N. O. Kalpan (Eds.), Method in enzymology (vol. 2, pp. 764–775). New York: Academic.

    Google Scholar 

  • Burkey, K. O., Eason, G., & Fiscus, E. L. (2003). Factors that affect leaf extracellular ascorbic acid content and redox status. Physiologia Plantarum, 117, 51–57.

    Article  CAS  Google Scholar 

  • Cakmak, I. (1994). Activity of ascorbate dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced magnesium and potassium-deficient leaves, but not in phosphorus-deficient leaves. Journal of Experimental Botany, 45, 1259–1266.

    Article  CAS  Google Scholar 

  • Calatayud, A., & Barreno, E. (2001). Chlorophyll fluorescence, antioxidant enzymes and lipid peroxidation in tomato in response to ozone and benomyl. Environmental Pollution, 115, 283–289.

    Article  CAS  Google Scholar 

  • Calatayud, A., & Barreno, E. (2004). Responses of two lettuce varieties on chlorophyll a fluorescence, photosynthetic pigments and lipid peroxidation. Plant Physiology and Biochemistry, 42, 549–555.

    Article  CAS  Google Scholar 

  • Calatayud, A., Iglesias, D. J., Talon, M., & Barreno, E. (2004). Response of spinach leaves to ozone measured by gas exchange, chlorophyll a fluorescence, antioxidant systems and lipid peroxidation. Photosynthetica, 42(1), 23–29.

    Article  CAS  Google Scholar 

  • Conklin, P. L., & Barth, C. (2004). Ascorbic acid, a familier small molecule intertwined in the response of plants to ozone, pathogens and the onset of senescence. Plant, Cell & Environment, 27, 959–970.

    Article  CAS  Google Scholar 

  • Coyle, M., Fowler, D., & Ashmore, M. (2003). New directions: implications of increasing tropospheric background ozone concentrations for vegetation. Atmospheric Environment, 37, 153–154.

    Article  CAS  Google Scholar 

  • Duxbury, A. C., & Yentsch, C. S. (1956). Plankton pigment monographs. Journal of Marine Research, 15, 19–101.

    Google Scholar 

  • Erley, G. S., Wijaya, K., Ulas, A., Becker, H., Wiesler, F., & Horsta, W. J. (2007). Leaf senescence and N uptake parameters as selection traits for nitrogen efficiency of oilseed rape cultivars. Physiologia Plantarum, 130, 519–531.

    Article  Google Scholar 

  • Fricke, W., & Pahlich, E. (1990). The effect of water stress on the vacuole-extravacuole compartmentation of proline in potato cell suspension cultures. Physiologia Plantarum, 78, 374–378.

    Article  Google Scholar 

  • Fridovich, I. (1974). Superoxide dismutase. Advances in Enzymology, 41, 35–97.

    CAS  Google Scholar 

  • Gaspar, T. H., Penel, C., Hagega, D., & Greppin, H. (1991). Peroxidases in plant growth, differentiation and development processes. In J. Lobarzewski, H. Greppin, C. Penel, & T. H. Gaspar (Eds.), Biochemical, molecular and physiological aspects of plant peroxidases (pp. 249–280). Switzerland: University de Geneve.

    Google Scholar 

  • Guidi, L., Degl'Innocenti, E., & Soldatini, G. F. (2002). Assimilation of CO2 enzyme activation and photosynthetic electron transport in bean leaves as affected by high light and ozone. The New Phytologist, 156, 377–388.

    Article  CAS  Google Scholar 

  • Heath, R. L. (2008). Modification of the biochemical pathways of plants induced by ozone: what are the varied route to changes? Environmental Pollution, 155, 453–463.

    Article  CAS  Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. Archives of Biochemistry and Biophysics, 125, 189–198.

    Article  CAS  Google Scholar 

  • Heidenreich, B., Bieber, E., Sandermann, H., & Ernst, D. (2006). Identification of a new member of the WRKY family in tobacco involved in ozone-induced gene regulation? Acta Physiologiae Plantarum, 28, 117–125.

    Article  CAS  Google Scholar 

  • Hewitt, E. J. (1963). Essential nutrient elements for plants: requirement and interaction in plants. In F. C. Steward (Ed.), Plant physiology (vol. III, pp. 137–360). New York: Academic Press Inc.

    Google Scholar 

  • Jones, C. G., & Hartley, S. E. (1999). A protein competition model of phenolic allocation. Oikos, 86, 27–44.

    Article  CAS  Google Scholar 

  • Keller, T., & Schwager, H. (1977). Air pollution and ascorbic acid. European Journal of Forest Pathology, 7, 338–350.

    Article  CAS  Google Scholar 

  • Li, P. H., Mane, S. P., Sioson, A. A., Robinet, C. V., Heath, L. S., Bohnert, H. J., et al. (2006). Effects of chronic ozone exposure on gene expression in Arabidopsis thaliana ecotypes and in Thellungielia halophila. Plant, Cell & Environment, 29, 854–868.

    Article  CAS  Google Scholar 

  • Ljubesic, N., & Britvec, M. (2006). Tropospheric ozone-induced structural changes in leaf mesophyll cell walls in grapevine plants. Biologia, 61, 85–90.

    Article  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the foliar phenol reagent. The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  • Maclachlan, S., & Zalik, S. (1963). Plastid structure, chlorophyll concentration and free amino acid composition of a chlorophyll mutant of barley. Canadian Journal of Botany, 41, 1053–1062.

    Article  CAS  Google Scholar 

  • Makino, A., Moe, T., & Ohira, K. (1984). Relationship between nitrogen and ribulose 1, 5 bisphosphate carboxylase in rice leaves from emergence through senescence. Plant & Cell Physiology, 25, 429–437.

    CAS  Google Scholar 

  • Matile, P. (2000). Biochemistry of Indian summer: physiology of autumn leaf coloration. Experimental Gerontology, 35, 145–158.

    Article  CAS  Google Scholar 

  • Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., et al. (2007). Global climate projections. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate Change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Mehlhorn, H., Tabner, B., & Wellburn, A. R. (1990). Electron spin resonance evidence for the formation of free radicals in plants exposed to ozone. Physiologia Plantarum, 79, 377–383.

    Article  CAS  Google Scholar 

  • Nakano, Y., & Asada, K. (1987). Purification of ascorbate peroxidase in spinach chloroplast, its inactivation in ascorbate depleted medium and reactivation by monodehydroascorbate radical. Plant & Cell Physiology, 28, 131–140.

    CAS  Google Scholar 

  • Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., et al. (2007). An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmospheric Chemistry and Physics, 7, 4419–4444.

    Article  CAS  Google Scholar 

  • Oke, M., Ahn, T., Schofield, A., & Paliyath, G. (2005). Effects of phosphorus fertilizer supplementation on processing quality and functional food ingredients in tomato. Journal of Agricultural and Food Chemistry, 53, 1531–1538.

    Article  CAS  Google Scholar 

  • Paoletti, E., Contran, N., Manning, W. J., Castagna, A., Ranieri, A., & Tagliaferro, F. (2008). Protection of ash (Fraxinus excelsior) trees from ozone injury by ethylenediurea (EDU): roles of biochemical changes and decreased stomatal conductance in enhancement of growth. Environmental Pollution, 155, 464–472.

    Article  CAS  Google Scholar 

  • Pell, E. J., Eckardt, N. A., & Glick, R. E. (1994). Biochemical and molecular basis for impairment of photosynthetic potential. Photosynthesis Research, 39, 453–462.

    Article  CAS  Google Scholar 

  • Rai, R., & Agrawal, M. (2008). Evaluation of physiological and biochemical responses of two rice (Oryza sativa L.) cultivars to ambient air pollution using open top chambers at a rural site in India. The Science of the Total Environment, 407, 679–691.

    Article  CAS  Google Scholar 

  • Rai, R., Agrawal, M., & Agrawal, S. B. (2007). Assessment of yield losses in tropical wheat using open top chambers. Atmospheric Environment, 41, 9543–9554.

    Article  CAS  Google Scholar 

  • Rao, M. V., Paliyath, C., & Ormrod, D. P. (1996). Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiology, 110, 125–136.

    Article  CAS  Google Scholar 

  • Saitanis, C. J., Riga-Karandinos, A. N., & Karandinos, M. G. (2001). Effects of ozone on chlorophyll and quantum yield of tobacco (Nicotiana tabacum L.) varieties. Chemosphere, 42, 945–953.

    Article  CAS  Google Scholar 

  • Sharma, Y. K., & Davis, K. R. (1997). The effects of ozone on antioxidant responses in plants. Free Radical Biology & Medicine, 23(3), 480–488.

    Article  CAS  Google Scholar 

  • Shin, R., & Schachtman, D. P. (2004). Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proceedings of the National Academy of Sciences of the United States of America, 101(23), 8827–8832.

    Article  CAS  Google Scholar 

  • Singh, A., Agrawal, S. B., & Rathore, D. (2005). Amelioration of Indian urban air pollution phytotoxicity in Beta vulgaris L. by modifying NPK nutrients. Environmental Pollution, 134, 385–395.

    Article  CAS  Google Scholar 

  • Singh, P., Agrawal, M., & Agrawal, S. B. (2009). Evaluation of physiological, growth and yield responses of a tropical oil crop (Brassica campestris L. var. Kranti) under ambient ozone pollution at varying NPK levels. Environmental Pollution, 157, 871–880.

    Article  CAS  Google Scholar 

  • Tewari, R. K., Kumar, P., Tewari, N., Srivastava, S., & Sharma, P. N. (2004). Macronutient deficiencies and differential antioxidant responses- influence on the activity and expression of superoxide dismutase in maize. Plant Science, 166, 687–694.

    Article  CAS  Google Scholar 

  • Tiwari, S., Agrawal, M., & Marshall, F. (2006). Evaluation of ambient air pollution impact on carrot plants at a suburban site using open top chamber. Environmental Monitoring and Assessment, 266, 15–30.

    Article  Google Scholar 

  • Tiwari, S., Rai, R., & Agrawal, M. (2008). Annual and seasonal variations in tropospheric ozone concentrations around Varanasi. International Journal of Remote Sensing, 29, 4499–4514.

    Article  Google Scholar 

  • Verma, M., Agrawal, M., & Deepak, S. S. (2000). Interactive effects of sulphur dioxide and mineral nutrient supply on photosynthetic characteristics and yield in four wheat cultivars. Photosynthetica, 38(1), 91–96.

    Article  CAS  Google Scholar 

  • Wahid, A. (2006a). Influence of atmospheric pollutants on agriculture in developing countries: a case study with three new wheat varieties in Pakistan. The Science of the Total Environment, 371, 304–313.

    Article  CAS  Google Scholar 

  • Wahid, A. (2006b). Productivity losses in barley attributable to ambient atmospheric pollutants in Pakistan. Atmospheric Environment, 40, 5342–5354.

    Article  CAS  Google Scholar 

  • Wang, H. X., Kiang, C. S., Tang, X. Y., Zhou, X. J., & Chameides, W. L. (2005). Surface ozone, a likely threat to crops in Yangtze Delta of China. Atmospheric Environment, 39, 3843–3850.

    Article  CAS  Google Scholar 

  • Wang, H. X., Zhou, L. J., & Tang, X. Y. (2006). Ozone concentrations in rural regions of the Yangtze Delta in China. Journal of Atmospheric Chemistry, 54, 255–265.

    Article  Google Scholar 

  • Wang, X. K., Manning, W. J., Feng, Z. W., & Zhu, Y. G. (2007a). Ground-level ozone in China: distribution and effects on crop yields. Environmental Pollution, 147, 394–400.

    Article  CAS  Google Scholar 

  • Wang, X. K., Zheng, Q. W., Yao, F. F., Chen, Z., Feng, Z. Z., & Manning, W. J. (2007b). Assessing the impact of ambient ozone on growth and yield of a rice (Oryza sativa L.) and a wheat (Triticum aestivum L.) cultivar grown in the Yangtze Delta, China, using three rates of application of ethylenediurea (EDU). Environmental Pollution, 148, 390–395.

    Article  CAS  Google Scholar 

  • Yang, T., & Poovaiah, B. W. (2000). An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death. The Journal of Biological Chemistry, 275, 38467–38473.

    Article  CAS  Google Scholar 

  • Zheng, Y., Lyons, T., Ollerenshaw, J. H., & Barnes, J. D. (2000). Ascorbate in the leaf apoplast is a factor mediating ozone resistance in Plantago major. Plant Physiology and Biochemistry, 38, 403–411.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are thankful to the Department of Science and Technology, Government of India, New Delhi for providing financial support to the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhoolika Agrawal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, P., Agrawal, M. & Agrawal, S.B. Differences in Ozone Sensitivity at Different NPK Levels of Three Tropical Varieties of Mustard (Brassica campestris L.): Photosynthetic Pigments, Metabolites, and Antioxidants. Water Air Soil Pollut 214, 435–450 (2011). https://doi.org/10.1007/s11270-010-0434-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0434-9

Keywords

Navigation