Dynamics of Dissolved Forms of Carbon and Inorganic Nitrogen in Small Watersheds of the Coastal Atlantic Forest in Southeast Brazil

Abstract

Based on the fact that streamwater quality reflects landscape conditions, the objectives of this study were: to investigate nitrogen (N), carbon (C), and major ion concentrations in six streams crossing minimally disturbed Atlantic Forest areas, with similar geomorphological characteristics; to determine N and C fluxes in one of these pristine streams (Indaiá); and assess the impact of human activity on the biogeochemistry of two other streams in the same region, crossing urbanized areas. The distribution pattern of carbon and inorganic nitrogen dissolved forms, as well as the major ion and biogenic gas concentrations in the streamwater, was similar in pristine streams, indicating that the C and N dynamics were determined by influence of some factors, such as climate, atmospheric deposition, geology, soil type, and land covering, which were analogous in the forested watersheds. The urban streams were significantly different from the pristine streams, showing low dissolved oxygen concentrations, high respiration rates, and high concentrations of carbon dioxide, dissolved inorganic nitrogen, dissolved inorganic carbon, and major ion. These differences were attributed to anthropogenic impact on water quality, especially domestic sewage discharge. Additionally, in the Indaiá stream, it was possible to observe the importance of rainfall over temporal dynamics of dissolved carbon forms, and also, the obtained specific flux of dissolved inorganic nitrogen was relatively elevated (approximately 11 kg ha−1 year−1). These results reveal the influence of human activity over the biogeochemistry of coastal streams and also indicate the importance N export of Atlantic Forest to the ocean.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Aber, J. D., Nadelhoffer, K. J., Steudler, P., & Mellilo, J. M. (1998). Nitrogen saturation in northern forest ecosystems: hypotheses revisited. BioScience, 48, 921–934.

    Article  Google Scholar 

  2. Aitkenhead, J. A., & McDowell, W. H. (2000). Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales. Global Biogeochemical Cycle, 14, 127–138.

    CAS  Article  Google Scholar 

  3. Amiotte-Suchet, P., Aubert, D., Probst, J. L., Gauthier-Lafaye, F., Probst, A., Andreux, F., et al. (1999). δ13C pattern of dissolved inorganic carbon in a small granitic catchment: the Strengbach case study (Vosges Mountains, France). Chemical Geology, 159, 129–145.

    CAS  Article  Google Scholar 

  4. Asner, G. P., Seastedt, T. R., & Townsend, A. R. (1997). The decoupling of terrestrial carbon and nitrogen cycles: human influences on land cover and nitrogen supply are altering natural biogeochemical links in the biosphere. BioScience, 47, 226–234.

    Article  Google Scholar 

  5. Barth, J. A. C., Cronin, A. A., Dunlop, J., & Kalin, R. M. (2003). Influence of carbonates on the riverine carbon cycle in an anthropogenically dominated catchment basin: evidence from major elements and stable carbon isotopes in the Lagan River (N. Ireland). Chemical Geology, 200, 203–216.

    CAS  Article  Google Scholar 

  6. Bluth, G. J. S., & Kump, L. R. (1994). Lithologic and climatologic controls of river chemistry. Geochimica et Cosmochimica Acta, 58, 2341–2359.

    CAS  Article  Google Scholar 

  7. Boyer, E. W., Goodale, C. L., Jaworsk, N. A., & Howarth, R. W. (2002). Anthropogenic nitrogen sources and relationships to riverine export in the northeastern USA. Biogeochemistry, 57, 137–169.

    Article  Google Scholar 

  8. Butler, J. N. (1991). Carbon dioxide equilibria and their applications. Chelsea, MI: Lewis Publishers.

    Google Scholar 

  9. Cairns, M. A., & Lajtha, K. (2005). Effects of succession on nitrogen export in the west-central Cascades, Oregon. Ecosystems, 8, 583–601.

    CAS  Article  Google Scholar 

  10. Cameron, E. M., Hall, G. E. M., Veizer, J., & Krouse, H. R. (1995). Isotopic and elemental hydrogeochemistry of major river system: Fraser River, British Columbia, Canada. Chemical Geology, 122, 149–169.

    CAS  Article  Google Scholar 

  11. Campbell, J. L., Hornbeck, J. W., McDowell, W. H., Buso, B. C., Shanley, J. B., & Likens, G. E. (2000). Dissolved organic nitrogen budgets for upland, forested ecosystems in New England. Biogeochemistry, 49, 123–142.

    CAS  Article  Google Scholar 

  12. Campbell, J. L., Hornbeck, J. W., Mitchell, M. J., Adams, M. B., Castro, M. S., Driscoll, C. T., et al. (2004). Input-output budgets, of inorganic nitrogen for 24 forest watersheds in the northeastern United States: a review. Water Air and Soil Pollution, 151, 373–396.

    CAS  Article  Google Scholar 

  13. Campos, M.C.R. (2008). Relação da composição e estrutura do componente arbóreo com variáveis microtopográficas e edáficas da Floresta Ombrófila Densa do Núcleo Picinguaba/PESM, Ubatuba/SP. Master dissertation, Campinas: Universidade Estadual de Campinas.

  14. Castro, M. S., Eshleman, K. N., Pitelka, L. F., Frech, G., Ramsey, M., Thomas, D. M., et al. (2007). Symptoms of nitrogen saturation in a aggrading forested watershed in western Maryland. Biogeochemistry, 84, 333–348.

    CAS  Article  Google Scholar 

  15. Cole, J. J., & Caraco, N. F. (2001). Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Marine and Freshwater Research, 52, 101–110.

    CAS  Article  Google Scholar 

  16. Cole, J. J., Caraco, N. F., Kling, G. W., & Kratz, T. K. (1994). Carbon dioxide supersaturation in the surface waters of lakes. Science, 265, 1568–1570.

    CAS  Article  Google Scholar 

  17. Companhia de Tecnologia de Saneamento Ambiental – CETESB. (2006). Governo do Estado de São Paulo. Relatório da qualidade das águas interiores do Estado de São Paulo, 2005. http://www.cetesb.sp.gov.br/Agua/rios/publicacoes.asp.pdf. Accessed 10 October 2006.

  18. Companhia de Tecnologia de Saneamento Ambiental – CETESB. (2007). Governo do Estado de São Paulo. Relatório da qualidade das águas interiores do Estado de São Paulo, 2006. http://www.cetesb.sp.gov.br/Agua/rios/publicacoes.asp.pdf. Accessed 03 March 2007.

  19. Companhia de Tecnologia de Saneamento Ambiental – CETESB. (2008). Governo do Estado de São Paulo. Relatório da qualidade das águas interiores do Estado de São Paulo, 2007. http://www.cetesb.sp.gov.br/Agua/rios/publicacoes.asp.pdf. Accessed 07 January 2008.

  20. Compton, J. E., Church, M. R., Larned, S. T., & Hogsett, W. E. (2003). Nitrogen export from forested watersheds in the Oregon Coast Range: the role of N2-fixing Red Alder. Ecosystems, 6, 773–785.

    CAS  Article  Google Scholar 

  21. Daniel, M. H. B., Montebelo, A. A., Bernardes, M. C., Ometto, J. P. H. B., Camargo, P. B., Krusche, A. V., et al. (2002). Effects of urban sewage on dissolved oxygen, dissolved inorganic carbon, and electrical conductivity of small streams along a gradient of urbanization in the Piracicaba River Basin. Water, Air and Soil Pollution, 136, 189–206.

    CAS  Article  Google Scholar 

  22. Downing, J. A., McClain, M., Twilley, R., Melack, J. M., Elser, J., Rabalais, N. N., et al. (1999). The impact of accelerating land use change on the N-cycle of tropical aquatic ecosystems: current conditions and projected changes. Biogeochemistry, 46, 109–148.

    Google Scholar 

  23. Filoso, S., Martinelli, L. A., Williams, M. R., Lara, L. B., Krusche, A., Ballester, V., et al. (2003). Land use and nitrogen export in the Piracicaba River basin, Southeast Brazil. Biogeochemistry, 65, 275–294.

    CAS  Article  Google Scholar 

  24. Filoso, S., Martinelli, L. A., Howarth, R. W., Boyer, E. W., & Dentener, F. (2006). Human activities changing the nitrogen cycle in Brazil. Biogeochemistry, 79, 61–89.

    CAS  Article  Google Scholar 

  25. Galloway, J. N. (1998). The global nitrogen cycle: changes and consequences. Environmental Pollution, 102, 15–24.

    CAS  Article  Google Scholar 

  26. Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., Cowling, E. B., et al. (2003). The nitrogen cascade. BioScience, 53, 341–356.

    Article  Google Scholar 

  27. Goller, R., Wilcke, W., Fleischbein, K., Valarezo, C., & Zech, W. (2006). Dissolved nitrogen, phosphorus, and sulfur forms in the ecosystem fluxes of a montane forest in Ecuador. Biogeochemistry, 77, 57–89.

    CAS  Article  Google Scholar 

  28. Grace, J. (2004). Understanding and managing the global carbon cycle. Journal of Ecology, 92, 189–202.

    CAS  Article  Google Scholar 

  29. Harris, G. P. (2001). Biogeochemistry of nitrogen and phosphorus in Australian catchments, rivers and estuaries: effects of land use and flow regulation and comparisons with global patterns. Marine and Freshwater Research, 52, 139–149.

    CAS  Article  Google Scholar 

  30. Hedin, L. O., Armesto, J. J., & Johnson, A. H. (1995). Patterns of nutrient loss from unpolluted, old growth temperate forests: evaluation of biogeochemical theory. Ecology, 76, 493–509.

    Article  Google Scholar 

  31. Hope, D., Billet, M. F., & Cresser, M. S. (1994). A review of the export of carbon in river water: fluxes and processes. Environmental Pollution, 84, 301–324.

    CAS  Article  Google Scholar 

  32. Howarth, R. W., Billen, G., Swaney, D., Townsend, A., Jaworski, N., Lajtha, K., et al. (1996). Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry, 35, 75–139.

    CAS  Article  Google Scholar 

  33. Instituto de Pesquisa Tecnológica de São Paulo–IPT. (2000). Diagnóstico da situação atual dos recursos hídricos da Unidade de Gerenciamento dos Recursos Hídricos do Litoral Norte–UGRHI-3: Relatório técnico nº 46.172.

  34. Jackson, D. A. (1993). Stopping rules in principal component analyses: a comparison of heuristical and statistical approaches. Ecology, 74, 2204–2214.

    Article  Google Scholar 

  35. Jarvie, H. P., Neal, C., Leach, D. V., Ryland, G. P., House, W. A., & Robson, A. J. (1997). Major ion concentrations and inorganic carbon chemistry of Humber rivers. Science of the Total Environment, 194(195), 285–302.

    Article  Google Scholar 

  36. Johnson, M. S., Lehmann, J., Selva, E. C., Abdo, M., Riha, S., & Couto, E. G. (2006). Organic carbon fluxes within and streamwater exports from headwater catchments in the southern Amazon. Hydrological Processes, 20, 2599–2614.

    CAS  Article  Google Scholar 

  37. Lewis, W. M. (2002). Yield of nitrogen from minimally disturbed watersheds of the United States. Biogeochemistry, 57(58), 375–385.

    Article  Google Scholar 

  38. Lewis, W. M., Melack, J. M., McDowell, W. H., McClain, M., & Richey, J. F. (1999). Nitrogen yields from undisturbed watersheds in the Americas. Biogeochemistry, 46, 149–162.

    CAS  Article  Google Scholar 

  39. Lu, H., Yin, C., Wang, W., & Shan, B. (2007). A comparison study of nutrient transfer via surface runoff from two small agricultural catchments in north China. Environmental Geology, 52, 1549–1558.

    CAS  Article  Google Scholar 

  40. Markich, S. J., & Brown, P. L. (1998). Relative importance of natural and anthropogenic influences on the fresh surface water chemistry of the Hawkesbury-Nepean River, south-eastern Australia. Science of the Total Environment, 217, 201–230.

    CAS  Article  Google Scholar 

  41. Martinelli, L. A., Krusche, A. V., Victoria, R. L., Camargo, P. B., Bernardes, M., Ferraz, E. S., et al. (1999). Effects of sewage on the chemical composition of Piracicaba River, Brazil. Water, Air and Soil Pollution, 110, 67–79.

    CAS  Article  Google Scholar 

  42. Martinelli, L. A., Camargo, P. B., Bernardes, M. C., & Ometto, J. P. H. B. (2005). Carbon, nitrogen, and stable carbon isotope composition and land-use changes in rivers of Brazil. In E. J. Roose, R. Lal, C. Feller, B. Barthès, & B. A. Stewart (Eds.), Soil erosion and carbon dynamics (pp. 239–254). New York: Taylor & Francis Group.

    Google Scholar 

  43. Martins, S. C. (2010). Caracterização dos solos e serapilheira ao longo do gradiente altitudinal da Mata Atlântica, estado de São Paulo. PhD thesis, Universidade de São Paulo, Piracicaba.

  44. McCune, B., & Mefford, M. J. (1997). PC-ORD: multivariate analysis of ecological data. Version 3.15. Gleneden Beach, Oregon: MjM Software Design.

    Google Scholar 

  45. McDowell, W. H., & Asbury, C. E. (1994). Export of carbon, nitrogen, and major ions from three tropical montane watersheds. Limnology and Oceanography, 39(1), 111–125.

    CAS  Article  Google Scholar 

  46. Moreira-Turcq, P., Seyler, P., Guyot, J. L., & Etcheber, H. (2003). Exportation of organic carbon from the Amazon River and its main tributaries. Hydrological Processes, 17, 1329–1344.

    Article  Google Scholar 

  47. Morellato, L. P. C., & Haddad, C. F. B. (2000). Introduction: the Brazilian Atlantic Forest. Biotropica, 32(4b), 786–792.

    Article  Google Scholar 

  48. Mosier, A. R., Bleken, M. A., Chainwanakupt, P., Ellis, E. C., Freney, J. R., Howarth, R. B., et al. (2002). Policy implications of human-accelerated nitrogen cycling. Biogeochemistry, 57, 477–516.

    Article  Google Scholar 

  49. Murray-Smith, C., Brummitt, N. A., Oliveira-Filho, A. T., Bachman, S., Moat, J., Lughadha, E. M. N., et al. (2009). Plant diversity hotspots in the Atlantic Coastal Forests of Brazil. Conservation Biology, 23, 151–163.

    Article  Google Scholar 

  50. Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.

    CAS  Article  Google Scholar 

  51. Neal, C., Jarvie, H. P., Neal, M., Hill, L., & Wickham, H. (2006). Nitrate concentrations in river waters of the upper Thames and its tributaries. Science of the Total Environment, 365, 15–32.

    CAS  Article  Google Scholar 

  52. Neill, C., Deegan, L. A., Thomas, S. M., Haupert, C. L., Krusche, A. V., Ballester, V. M., et al. (2006). Deforestation alters the hydraulic and biogeochemical characteristics of small lowland Amazonian streams. Hydrological Processes, 20, 2563–2580.

    CAS  Article  Google Scholar 

  53. Perakis, S. S., & Hedin, L. O. (2002). Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature, 415, 416–419.

    Article  Google Scholar 

  54. Peterson, B. J., Wollheim, W. M., Mulholland, P. J., Webster, J. R., Meyer, J. L., Tank, J. L., et al. (2001). Control of nitrogen export from watersheds by headwater streams. Science, 292, 86–90.

    CAS  Article  Google Scholar 

  55. Richey, J. E., Devol, A. H., Wofsy, S. C., Victoria, R., & Ribeiro, M. N. G. (1988). Biogenic gases and the oxidation and reduction of carbon in Amazon river and floodplain waters. Limnology and Oceanography, 33(4), 551–561.

    CAS  Article  Google Scholar 

  56. Richey, J. E., Hedges, J. I., Devol, A. H., Quay, P. D., Victoria, R., Martinelli, L. A., et al. (1990). Biogeochemistry of carbon in the Amazon River. Limnology and Oceanography, 35(2), 352–371.

    CAS  Article  Google Scholar 

  57. Salimon, C. I., & Negrelle, R. R. B. (2001). Natural regeneration in quaternary coast plain in southern Brazilian Atlantic Rain Forest. Brazilian Archives of Biology and Technology, 44, 155–163.

    Article  Google Scholar 

  58. Salomão, M. S. M. B., Cole, J. J., Clemente, C. A., Silva, D. M. L., Camargo, P. B., Victoria, R. L., et al. (2008). CO2 and O2 dynamics in human-impacted watersheds in the state of São Paulo, Brazil. Biogeochemistry, 88, 271–283.

    Article  Google Scholar 

  59. Sanchez, M., Pedroni, F., Leitão-Filho, H. F., & Cesar, O. (1999). Composição florística de um trecho de floresta riparia na Mata Atlântica em Picinguaba, Ubatuba, SP. Revista Brasileira de Botânica, 22(1), 31–42.

    Google Scholar 

  60. Seyler, P., Coynel, A., Moreira-Turcq, P., Etcheber, H., Colas, C., Orange, D., et al. (2005). Organic carbon transported by the Equatorial rivers: example of Congo-Zaire and Amazon Basins. In E. J. Roose, R. Lal, C. Feller, B. Barthès, & B. A. Stewart (Eds.), Soil erosion and carbon dynamics (pp. 255–274). New York: Taylor & Francis Group.

    Google Scholar 

  61. Skirrow, G. (1975). The dissolved gases—carbon dioxide. In J. P. Riley & G. Skirrow (Eds.), Chemical oceanography (pp. 1–192). London: Academic Press.

    Google Scholar 

  62. Solomon, D., Lehmann, J., Kinyangi, J., Amelung, W., Lobe, I., Pell, A., et al. (2007). Long-term impacts of anthropogenic perturbations on dynamics and speciation of organic carbon in tropical forest and subtropical grassland ecosystems. Global Change Biology, 13, 511–530.

    Article  Google Scholar 

  63. StatSoft, Inc. (2007). Statistica (data analysis software system). Version 7.1. http://http://www.statsoft.com. Accessed 27 August 2007.

  64. Suguio, K., & Tessler, M. G. (1984). Planícies de cordões litorâneos quaternários do Brasil: Origem e Nomenclatura. In L. D. Lacerda, D. S. Araújo, R. Cerqueira, & B. Turcq (Eds.), Restingas: Origem, Estrutura e Processos (pp. 15–25). Niterói: Centro Educacional Universidade Federal Fluminense (CEUFF).

    Google Scholar 

  65. Turgeon, J. M. L., & Courchesne, F. (2008). Hydrochemical behavior of dissolved nitrogen and carbon in a headwater stream of the Canadian Shield: relevance of antecedent soil moisture conditions. Hydrological Processes, 22, 327–339.

    CAS  Article  Google Scholar 

  66. Vanderbilt, K. L., Lajtha, K., & Swanson, F. J. (2003). Biogeochemistry of unpolluted forested watersheds in the Oregon Cascades: temporal patterns of precipitation and stream nitrogen fluxes. Biogeochemistry, 62, 87–117.

    CAS  Article  Google Scholar 

  67. Veloso, H. P., Rangel, A. L. R. F., & Lima, J. C. A. (1991). Classificação da vegetação brasileira adaptada a um sistema universal. Rio de Janeiro: Fundação Instituto Brasileiro de Geografia e Estatística.

    Google Scholar 

  68. Vieira, S. A., Alves, L. F., Aidar, M. P. M., Araújo, L. S., Baker, T., Batista, J. L. F., et al. (2008). Estimation of biomass and carbon stocks: the case of the Atlantic Forest. Biota Neotropica, 8, 21–29.

    Article  Google Scholar 

  69. Villela, D. M., Nascimento, M. T., Aragão, L. E. O. C., & Gama, D. M. (2006). Effect of selective logging on forest structure and nutrient cycling in a seasonally dry Brazilian Atlantic forest. Journal of Biogeography, 33, 506–516.

    Article  Google Scholar 

  70. Vink, S., Ford, P. W., Bormans, M., Kelly, C., & Turley, C. (2007). Contrasting nutrient exports from a forested and an agricultural catchment in south-eastern Australia. Biogeochemistry, 84, 247–264.

    CAS  Article  Google Scholar 

  71. Vitousek, P. M. (1994). Beyond global warming: ecology and global change. Ecology, 75, 1861–1876.

    Article  Google Scholar 

  72. Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., et al. (1997). Human alteration of global nitrogen cycle: sources and consequences. Ecological Applications, 7(3), 737–750.

    Google Scholar 

  73. Wachniew, P. (2006). Isotopic composition of dissolved inorganic carbon in a large pollutes river: the Vistula, Poland. Chemical Geology, 233, 293–308.

    CAS  Article  Google Scholar 

  74. Waterloo, M. J., Oliveira, S. M., Drucker, D. P., Nobre, A. D., Cuartas, L. A., Hodnett, M. G., et al. (2006). Export of organic carbon in run-off from an Amazonian rainforest blackwater catchment. Hydrological Processes, 20, 2581–2597.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the State of São Paulo Research Foundation (FAPESP), process number 05/57812-0, and also as part of the Thematic Project Functional Gradient (process number 03/12595-7), within the BIOTA/FAPESP Program–The Biodiversity Virtual Institute (www.biota.org.br).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tatiana M. B. Andrade.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Andrade, T.M.B., Camargo, P.B., Silva, D.M.L. et al. Dynamics of Dissolved Forms of Carbon and Inorganic Nitrogen in Small Watersheds of the Coastal Atlantic Forest in Southeast Brazil. Water Air Soil Pollut 214, 393–408 (2011). https://doi.org/10.1007/s11270-010-0431-z

Download citation

Keywords

  • Nitrogen
  • Carbon
  • Streamwater
  • Pristine watersheds
  • Atlantic forest
  • Urbanization