Advertisement

Water, Air, & Soil Pollution

, Volume 214, Issue 1–4, pp 393–408 | Cite as

Dynamics of Dissolved Forms of Carbon and Inorganic Nitrogen in Small Watersheds of the Coastal Atlantic Forest in Southeast Brazil

  • Tatiana M. B. AndradeEmail author
  • Plínio B. Camargo
  • Daniela M. L. Silva
  • Marisa C. Piccolo
  • Simone A. Vieira
  • Luciana F. Alves
  • Carlos A. Joly
  • Luiz A. Martinelli
Article

Abstract

Based on the fact that streamwater quality reflects landscape conditions, the objectives of this study were: to investigate nitrogen (N), carbon (C), and major ion concentrations in six streams crossing minimally disturbed Atlantic Forest areas, with similar geomorphological characteristics; to determine N and C fluxes in one of these pristine streams (Indaiá); and assess the impact of human activity on the biogeochemistry of two other streams in the same region, crossing urbanized areas. The distribution pattern of carbon and inorganic nitrogen dissolved forms, as well as the major ion and biogenic gas concentrations in the streamwater, was similar in pristine streams, indicating that the C and N dynamics were determined by influence of some factors, such as climate, atmospheric deposition, geology, soil type, and land covering, which were analogous in the forested watersheds. The urban streams were significantly different from the pristine streams, showing low dissolved oxygen concentrations, high respiration rates, and high concentrations of carbon dioxide, dissolved inorganic nitrogen, dissolved inorganic carbon, and major ion. These differences were attributed to anthropogenic impact on water quality, especially domestic sewage discharge. Additionally, in the Indaiá stream, it was possible to observe the importance of rainfall over temporal dynamics of dissolved carbon forms, and also, the obtained specific flux of dissolved inorganic nitrogen was relatively elevated (approximately 11 kg ha−1 year−1). These results reveal the influence of human activity over the biogeochemistry of coastal streams and also indicate the importance N export of Atlantic Forest to the ocean.

Keywords

Nitrogen Carbon Streamwater Pristine watersheds Atlantic forest Urbanization 

Notes

Acknowledgements

This research was supported by the State of São Paulo Research Foundation (FAPESP), process number 05/57812-0, and also as part of the Thematic Project Functional Gradient (process number 03/12595-7), within the BIOTA/FAPESP Program–The Biodiversity Virtual Institute (www.biota.org.br).

References

  1. Aber, J. D., Nadelhoffer, K. J., Steudler, P., & Mellilo, J. M. (1998). Nitrogen saturation in northern forest ecosystems: hypotheses revisited. BioScience, 48, 921–934.CrossRefGoogle Scholar
  2. Aitkenhead, J. A., & McDowell, W. H. (2000). Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales. Global Biogeochemical Cycle, 14, 127–138.CrossRefGoogle Scholar
  3. Amiotte-Suchet, P., Aubert, D., Probst, J. L., Gauthier-Lafaye, F., Probst, A., Andreux, F., et al. (1999). δ13C pattern of dissolved inorganic carbon in a small granitic catchment: the Strengbach case study (Vosges Mountains, France). Chemical Geology, 159, 129–145.CrossRefGoogle Scholar
  4. Asner, G. P., Seastedt, T. R., & Townsend, A. R. (1997). The decoupling of terrestrial carbon and nitrogen cycles: human influences on land cover and nitrogen supply are altering natural biogeochemical links in the biosphere. BioScience, 47, 226–234.CrossRefGoogle Scholar
  5. Barth, J. A. C., Cronin, A. A., Dunlop, J., & Kalin, R. M. (2003). Influence of carbonates on the riverine carbon cycle in an anthropogenically dominated catchment basin: evidence from major elements and stable carbon isotopes in the Lagan River (N. Ireland). Chemical Geology, 200, 203–216.CrossRefGoogle Scholar
  6. Bluth, G. J. S., & Kump, L. R. (1994). Lithologic and climatologic controls of river chemistry. Geochimica et Cosmochimica Acta, 58, 2341–2359.CrossRefGoogle Scholar
  7. Boyer, E. W., Goodale, C. L., Jaworsk, N. A., & Howarth, R. W. (2002). Anthropogenic nitrogen sources and relationships to riverine export in the northeastern USA. Biogeochemistry, 57, 137–169.CrossRefGoogle Scholar
  8. Butler, J. N. (1991). Carbon dioxide equilibria and their applications. Chelsea, MI: Lewis Publishers.Google Scholar
  9. Cairns, M. A., & Lajtha, K. (2005). Effects of succession on nitrogen export in the west-central Cascades, Oregon. Ecosystems, 8, 583–601.CrossRefGoogle Scholar
  10. Cameron, E. M., Hall, G. E. M., Veizer, J., & Krouse, H. R. (1995). Isotopic and elemental hydrogeochemistry of major river system: Fraser River, British Columbia, Canada. Chemical Geology, 122, 149–169.CrossRefGoogle Scholar
  11. Campbell, J. L., Hornbeck, J. W., McDowell, W. H., Buso, B. C., Shanley, J. B., & Likens, G. E. (2000). Dissolved organic nitrogen budgets for upland, forested ecosystems in New England. Biogeochemistry, 49, 123–142.CrossRefGoogle Scholar
  12. Campbell, J. L., Hornbeck, J. W., Mitchell, M. J., Adams, M. B., Castro, M. S., Driscoll, C. T., et al. (2004). Input-output budgets, of inorganic nitrogen for 24 forest watersheds in the northeastern United States: a review. Water Air and Soil Pollution, 151, 373–396.CrossRefGoogle Scholar
  13. Campos, M.C.R. (2008). Relação da composição e estrutura do componente arbóreo com variáveis microtopográficas e edáficas da Floresta Ombrófila Densa do Núcleo Picinguaba/PESM, Ubatuba/SP. Master dissertation, Campinas: Universidade Estadual de Campinas.Google Scholar
  14. Castro, M. S., Eshleman, K. N., Pitelka, L. F., Frech, G., Ramsey, M., Thomas, D. M., et al. (2007). Symptoms of nitrogen saturation in a aggrading forested watershed in western Maryland. Biogeochemistry, 84, 333–348.CrossRefGoogle Scholar
  15. Cole, J. J., & Caraco, N. F. (2001). Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Marine and Freshwater Research, 52, 101–110.CrossRefGoogle Scholar
  16. Cole, J. J., Caraco, N. F., Kling, G. W., & Kratz, T. K. (1994). Carbon dioxide supersaturation in the surface waters of lakes. Science, 265, 1568–1570.CrossRefGoogle Scholar
  17. Companhia de Tecnologia de Saneamento Ambiental – CETESB. (2006). Governo do Estado de São Paulo. Relatório da qualidade das águas interiores do Estado de São Paulo, 2005. http://www.cetesb.sp.gov.br/Agua/rios/publicacoes.asp.pdf. Accessed 10 October 2006.
  18. Companhia de Tecnologia de Saneamento Ambiental – CETESB. (2007). Governo do Estado de São Paulo. Relatório da qualidade das águas interiores do Estado de São Paulo, 2006. http://www.cetesb.sp.gov.br/Agua/rios/publicacoes.asp.pdf. Accessed 03 March 2007.
  19. Companhia de Tecnologia de Saneamento Ambiental – CETESB. (2008). Governo do Estado de São Paulo. Relatório da qualidade das águas interiores do Estado de São Paulo, 2007. http://www.cetesb.sp.gov.br/Agua/rios/publicacoes.asp.pdf. Accessed 07 January 2008.
  20. Compton, J. E., Church, M. R., Larned, S. T., & Hogsett, W. E. (2003). Nitrogen export from forested watersheds in the Oregon Coast Range: the role of N2-fixing Red Alder. Ecosystems, 6, 773–785.CrossRefGoogle Scholar
  21. Daniel, M. H. B., Montebelo, A. A., Bernardes, M. C., Ometto, J. P. H. B., Camargo, P. B., Krusche, A. V., et al. (2002). Effects of urban sewage on dissolved oxygen, dissolved inorganic carbon, and electrical conductivity of small streams along a gradient of urbanization in the Piracicaba River Basin. Water, Air and Soil Pollution, 136, 189–206.CrossRefGoogle Scholar
  22. Downing, J. A., McClain, M., Twilley, R., Melack, J. M., Elser, J., Rabalais, N. N., et al. (1999). The impact of accelerating land use change on the N-cycle of tropical aquatic ecosystems: current conditions and projected changes. Biogeochemistry, 46, 109–148.Google Scholar
  23. Filoso, S., Martinelli, L. A., Williams, M. R., Lara, L. B., Krusche, A., Ballester, V., et al. (2003). Land use and nitrogen export in the Piracicaba River basin, Southeast Brazil. Biogeochemistry, 65, 275–294.CrossRefGoogle Scholar
  24. Filoso, S., Martinelli, L. A., Howarth, R. W., Boyer, E. W., & Dentener, F. (2006). Human activities changing the nitrogen cycle in Brazil. Biogeochemistry, 79, 61–89.CrossRefGoogle Scholar
  25. Galloway, J. N. (1998). The global nitrogen cycle: changes and consequences. Environmental Pollution, 102, 15–24.CrossRefGoogle Scholar
  26. Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., Cowling, E. B., et al. (2003). The nitrogen cascade. BioScience, 53, 341–356.CrossRefGoogle Scholar
  27. Goller, R., Wilcke, W., Fleischbein, K., Valarezo, C., & Zech, W. (2006). Dissolved nitrogen, phosphorus, and sulfur forms in the ecosystem fluxes of a montane forest in Ecuador. Biogeochemistry, 77, 57–89.CrossRefGoogle Scholar
  28. Grace, J. (2004). Understanding and managing the global carbon cycle. Journal of Ecology, 92, 189–202.CrossRefGoogle Scholar
  29. Harris, G. P. (2001). Biogeochemistry of nitrogen and phosphorus in Australian catchments, rivers and estuaries: effects of land use and flow regulation and comparisons with global patterns. Marine and Freshwater Research, 52, 139–149.CrossRefGoogle Scholar
  30. Hedin, L. O., Armesto, J. J., & Johnson, A. H. (1995). Patterns of nutrient loss from unpolluted, old growth temperate forests: evaluation of biogeochemical theory. Ecology, 76, 493–509.CrossRefGoogle Scholar
  31. Hope, D., Billet, M. F., & Cresser, M. S. (1994). A review of the export of carbon in river water: fluxes and processes. Environmental Pollution, 84, 301–324.CrossRefGoogle Scholar
  32. Howarth, R. W., Billen, G., Swaney, D., Townsend, A., Jaworski, N., Lajtha, K., et al. (1996). Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry, 35, 75–139.CrossRefGoogle Scholar
  33. Instituto de Pesquisa Tecnológica de São Paulo–IPT. (2000). Diagnóstico da situação atual dos recursos hídricos da Unidade de Gerenciamento dos Recursos Hídricos do Litoral Norte–UGRHI-3: Relatório técnico nº 46.172. Google Scholar
  34. Jackson, D. A. (1993). Stopping rules in principal component analyses: a comparison of heuristical and statistical approaches. Ecology, 74, 2204–2214.CrossRefGoogle Scholar
  35. Jarvie, H. P., Neal, C., Leach, D. V., Ryland, G. P., House, W. A., & Robson, A. J. (1997). Major ion concentrations and inorganic carbon chemistry of Humber rivers. Science of the Total Environment, 194(195), 285–302.CrossRefGoogle Scholar
  36. Johnson, M. S., Lehmann, J., Selva, E. C., Abdo, M., Riha, S., & Couto, E. G. (2006). Organic carbon fluxes within and streamwater exports from headwater catchments in the southern Amazon. Hydrological Processes, 20, 2599–2614.CrossRefGoogle Scholar
  37. Lewis, W. M. (2002). Yield of nitrogen from minimally disturbed watersheds of the United States. Biogeochemistry, 57(58), 375–385.CrossRefGoogle Scholar
  38. Lewis, W. M., Melack, J. M., McDowell, W. H., McClain, M., & Richey, J. F. (1999). Nitrogen yields from undisturbed watersheds in the Americas. Biogeochemistry, 46, 149–162.CrossRefGoogle Scholar
  39. Lu, H., Yin, C., Wang, W., & Shan, B. (2007). A comparison study of nutrient transfer via surface runoff from two small agricultural catchments in north China. Environmental Geology, 52, 1549–1558.CrossRefGoogle Scholar
  40. Markich, S. J., & Brown, P. L. (1998). Relative importance of natural and anthropogenic influences on the fresh surface water chemistry of the Hawkesbury-Nepean River, south-eastern Australia. Science of the Total Environment, 217, 201–230.CrossRefGoogle Scholar
  41. Martinelli, L. A., Krusche, A. V., Victoria, R. L., Camargo, P. B., Bernardes, M., Ferraz, E. S., et al. (1999). Effects of sewage on the chemical composition of Piracicaba River, Brazil. Water, Air and Soil Pollution, 110, 67–79.CrossRefGoogle Scholar
  42. Martinelli, L. A., Camargo, P. B., Bernardes, M. C., & Ometto, J. P. H. B. (2005). Carbon, nitrogen, and stable carbon isotope composition and land-use changes in rivers of Brazil. In E. J. Roose, R. Lal, C. Feller, B. Barthès, & B. A. Stewart (Eds.), Soil erosion and carbon dynamics (pp. 239–254). New York: Taylor & Francis Group.Google Scholar
  43. Martins, S. C. (2010). Caracterização dos solos e serapilheira ao longo do gradiente altitudinal da Mata Atlântica, estado de São Paulo. PhD thesis, Universidade de São Paulo, Piracicaba.Google Scholar
  44. McCune, B., & Mefford, M. J. (1997). PC-ORD: multivariate analysis of ecological data. Version 3.15. Gleneden Beach, Oregon: MjM Software Design.Google Scholar
  45. McDowell, W. H., & Asbury, C. E. (1994). Export of carbon, nitrogen, and major ions from three tropical montane watersheds. Limnology and Oceanography, 39(1), 111–125.CrossRefGoogle Scholar
  46. Moreira-Turcq, P., Seyler, P., Guyot, J. L., & Etcheber, H. (2003). Exportation of organic carbon from the Amazon River and its main tributaries. Hydrological Processes, 17, 1329–1344.CrossRefGoogle Scholar
  47. Morellato, L. P. C., & Haddad, C. F. B. (2000). Introduction: the Brazilian Atlantic Forest. Biotropica, 32(4b), 786–792.CrossRefGoogle Scholar
  48. Mosier, A. R., Bleken, M. A., Chainwanakupt, P., Ellis, E. C., Freney, J. R., Howarth, R. B., et al. (2002). Policy implications of human-accelerated nitrogen cycling. Biogeochemistry, 57, 477–516.CrossRefGoogle Scholar
  49. Murray-Smith, C., Brummitt, N. A., Oliveira-Filho, A. T., Bachman, S., Moat, J., Lughadha, E. M. N., et al. (2009). Plant diversity hotspots in the Atlantic Coastal Forests of Brazil. Conservation Biology, 23, 151–163.CrossRefGoogle Scholar
  50. Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.CrossRefGoogle Scholar
  51. Neal, C., Jarvie, H. P., Neal, M., Hill, L., & Wickham, H. (2006). Nitrate concentrations in river waters of the upper Thames and its tributaries. Science of the Total Environment, 365, 15–32.CrossRefGoogle Scholar
  52. Neill, C., Deegan, L. A., Thomas, S. M., Haupert, C. L., Krusche, A. V., Ballester, V. M., et al. (2006). Deforestation alters the hydraulic and biogeochemical characteristics of small lowland Amazonian streams. Hydrological Processes, 20, 2563–2580.CrossRefGoogle Scholar
  53. Perakis, S. S., & Hedin, L. O. (2002). Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature, 415, 416–419.CrossRefGoogle Scholar
  54. Peterson, B. J., Wollheim, W. M., Mulholland, P. J., Webster, J. R., Meyer, J. L., Tank, J. L., et al. (2001). Control of nitrogen export from watersheds by headwater streams. Science, 292, 86–90.CrossRefGoogle Scholar
  55. Richey, J. E., Devol, A. H., Wofsy, S. C., Victoria, R., & Ribeiro, M. N. G. (1988). Biogenic gases and the oxidation and reduction of carbon in Amazon river and floodplain waters. Limnology and Oceanography, 33(4), 551–561.CrossRefGoogle Scholar
  56. Richey, J. E., Hedges, J. I., Devol, A. H., Quay, P. D., Victoria, R., Martinelli, L. A., et al. (1990). Biogeochemistry of carbon in the Amazon River. Limnology and Oceanography, 35(2), 352–371.CrossRefGoogle Scholar
  57. Salimon, C. I., & Negrelle, R. R. B. (2001). Natural regeneration in quaternary coast plain in southern Brazilian Atlantic Rain Forest. Brazilian Archives of Biology and Technology, 44, 155–163.CrossRefGoogle Scholar
  58. Salomão, M. S. M. B., Cole, J. J., Clemente, C. A., Silva, D. M. L., Camargo, P. B., Victoria, R. L., et al. (2008). CO2 and O2 dynamics in human-impacted watersheds in the state of São Paulo, Brazil. Biogeochemistry, 88, 271–283.CrossRefGoogle Scholar
  59. Sanchez, M., Pedroni, F., Leitão-Filho, H. F., & Cesar, O. (1999). Composição florística de um trecho de floresta riparia na Mata Atlântica em Picinguaba, Ubatuba, SP. Revista Brasileira de Botânica, 22(1), 31–42.Google Scholar
  60. Seyler, P., Coynel, A., Moreira-Turcq, P., Etcheber, H., Colas, C., Orange, D., et al. (2005). Organic carbon transported by the Equatorial rivers: example of Congo-Zaire and Amazon Basins. In E. J. Roose, R. Lal, C. Feller, B. Barthès, & B. A. Stewart (Eds.), Soil erosion and carbon dynamics (pp. 255–274). New York: Taylor & Francis Group.Google Scholar
  61. Skirrow, G. (1975). The dissolved gases—carbon dioxide. In J. P. Riley & G. Skirrow (Eds.), Chemical oceanography (pp. 1–192). London: Academic Press.Google Scholar
  62. Solomon, D., Lehmann, J., Kinyangi, J., Amelung, W., Lobe, I., Pell, A., et al. (2007). Long-term impacts of anthropogenic perturbations on dynamics and speciation of organic carbon in tropical forest and subtropical grassland ecosystems. Global Change Biology, 13, 511–530.CrossRefGoogle Scholar
  63. StatSoft, Inc. (2007). Statistica (data analysis software system). Version 7.1. http://http://www.statsoft.com. Accessed 27 August 2007.
  64. Suguio, K., & Tessler, M. G. (1984). Planícies de cordões litorâneos quaternários do Brasil: Origem e Nomenclatura. In L. D. Lacerda, D. S. Araújo, R. Cerqueira, & B. Turcq (Eds.), Restingas: Origem, Estrutura e Processos (pp. 15–25). Niterói: Centro Educacional Universidade Federal Fluminense (CEUFF).Google Scholar
  65. Turgeon, J. M. L., & Courchesne, F. (2008). Hydrochemical behavior of dissolved nitrogen and carbon in a headwater stream of the Canadian Shield: relevance of antecedent soil moisture conditions. Hydrological Processes, 22, 327–339.CrossRefGoogle Scholar
  66. Vanderbilt, K. L., Lajtha, K., & Swanson, F. J. (2003). Biogeochemistry of unpolluted forested watersheds in the Oregon Cascades: temporal patterns of precipitation and stream nitrogen fluxes. Biogeochemistry, 62, 87–117.CrossRefGoogle Scholar
  67. Veloso, H. P., Rangel, A. L. R. F., & Lima, J. C. A. (1991). Classificação da vegetação brasileira adaptada a um sistema universal. Rio de Janeiro: Fundação Instituto Brasileiro de Geografia e Estatística.Google Scholar
  68. Vieira, S. A., Alves, L. F., Aidar, M. P. M., Araújo, L. S., Baker, T., Batista, J. L. F., et al. (2008). Estimation of biomass and carbon stocks: the case of the Atlantic Forest. Biota Neotropica, 8, 21–29.CrossRefGoogle Scholar
  69. Villela, D. M., Nascimento, M. T., Aragão, L. E. O. C., & Gama, D. M. (2006). Effect of selective logging on forest structure and nutrient cycling in a seasonally dry Brazilian Atlantic forest. Journal of Biogeography, 33, 506–516.CrossRefGoogle Scholar
  70. Vink, S., Ford, P. W., Bormans, M., Kelly, C., & Turley, C. (2007). Contrasting nutrient exports from a forested and an agricultural catchment in south-eastern Australia. Biogeochemistry, 84, 247–264.CrossRefGoogle Scholar
  71. Vitousek, P. M. (1994). Beyond global warming: ecology and global change. Ecology, 75, 1861–1876.CrossRefGoogle Scholar
  72. Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., et al. (1997). Human alteration of global nitrogen cycle: sources and consequences. Ecological Applications, 7(3), 737–750.Google Scholar
  73. Wachniew, P. (2006). Isotopic composition of dissolved inorganic carbon in a large pollutes river: the Vistula, Poland. Chemical Geology, 233, 293–308.CrossRefGoogle Scholar
  74. Waterloo, M. J., Oliveira, S. M., Drucker, D. P., Nobre, A. D., Cuartas, L. A., Hodnett, M. G., et al. (2006). Export of organic carbon in run-off from an Amazonian rainforest blackwater catchment. Hydrological Processes, 20, 2581–2597.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Tatiana M. B. Andrade
    • 1
    Email author
  • Plínio B. Camargo
    • 1
  • Daniela M. L. Silva
    • 2
  • Marisa C. Piccolo
    • 1
  • Simone A. Vieira
    • 1
  • Luciana F. Alves
    • 3
    • 4
  • Carlos A. Joly
    • 5
  • Luiz A. Martinelli
    • 1
  1. 1.Laboratório de Ecologia Isotópica, Centro de Energia Nuclear na Agricultura–CENAUniversidade de São Paulo–USPPiracicabaBrazil
  2. 2.Departamento de Ciências BiológicasUniversidade Estadual de Santa Cruz–UESCIlhéusBrazil
  3. 3.Institute of Arctic and Alpine Research–INSTAARUniversity of ColoradoBoulderUSA
  4. 4.Seção de EcologiaInstituto de BotânicaSão PauloBrazil
  5. 5.Instituto de BiologiaUniversidade de Campinas–UNICAMPCampinasBrazil

Personalised recommendations