Water, Air, & Soil Pollution

, Volume 214, Issue 1–4, pp 307–320 | Cite as

Arsenic Mining Waste in the Catchment Area of the Madrid Detrital Aquifer (Spain)

  • Lorena Recio-Vazquez
  • Javier Garcia-Guinea
  • Pilar Carral
  • Ana Maria Alvarez
  • Fernando Garrido
Article

Abstract

In recent years, elevated arsenic concentrations in groundwater used for drinking water supplies have been recognised in the Madrid Tertiary detrital aquifer. Although only natural causes have been suggested as the source of arsenic, this study aims to highlight that the anthropogenic contribution cannot be disregarded. During the sub-catchment’s areas sampling, we found many geographical sites where natural arsenopyrite [FeAsS] originally encapsulated in pegmatite bodies and quartz veins, was artificially outcropped and dumped out, since mining wastes were scattered and exposed to weathering. Several mineral and ground specimens were collected to analyse its mineralogical and chemical composition by X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) spectrometry and by Environmental Scanning Electron Microscope (ESEM). Both, the abundant existence of secondary phases, such as scorodite [FeAsO4⋅2H2O] and jarosite [KFe3(SO4)2(OH)6], much more soluble than arsenopyrite, and the lixiviation experiments of arsenopyrite in acidic media to simulate acid mine drainage (AMD) conditions, usually found in old mining districts, point to a potential risk of arsenic contamination of surface water bodies, which operate as recharged waters of the aquifer in the studied area. The elemental determination of heavy metals present in ground samples by XRF analyses, reaching up to 1,173 mg kg–1 of copper, 347 mg kg–1 of lead and 113,702 mg kg–1 of arsenic; and the physicochemical and arsenic fractionation studies of soil samples, led us to classify the soil as Spolic Technosol (Toxic). The contamination of the area due to old mining activities could release arsenic to Madrid water supplies; accordingly, additional decontamination studies should be performed.

Keywords

Arsenic Arsenopyrite Scorodite Groundwater Mining wastes Soil contamination 

References

  1. Armienta, M. A., Villasenor, G., Rodriguez, R., Ongley, L. K., & Mango, H. (2001). The role of arsenic-bearing rocks in groundwater pollution at Zimapan Valley. Mexico Environ Geol, 40, 571–581.CrossRefGoogle Scholar
  2. Berg, M., Stengel, C., Trang, P. T. K., Viet, P. H., Sampson, M. L., Leng, M., et al. (2007). Magnitude of arsenic pollution in the Mekong and Red River Deltas—Cambodia and Vietnam. Science of the Total Environment, 372, 413–425.CrossRefGoogle Scholar
  3. Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54, 464–465.CrossRefGoogle Scholar
  4. Cheng, H. F., Hu, Y. N., Luo, J., Xu, B., & Zhao, J. F. (2009). Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems. Journal of Hazardous Materials, 165, 13–26.CrossRefGoogle Scholar
  5. De Miguel E., Callaba A., Arranz J.C., Cala V., Chacón E., Gallego E., et al. (2002). Determinacion de niveles de fondo y niveles de referencia de metales pesados y otros elementos traza en los suelos de la Comunidad de Madrid. (Determination of background levels and reference levels of heavy metals and other trace elements in soils of the Community of Madrid). Instituto Geológico y Minero de España (IGME), Madrid, pp. 167.Google Scholar
  6. F.A.O. (2006). World reference base for soil resources: A framework for international classification, correlation and communication. Food and Agriculture Organization of the United Nations, Rome, pp. 128.Google Scholar
  7. Farias, S. S., Casa, V. A., Vazquez, C., Ferpozzi, L., Pucci, G. N., & Cohen, I. M. (2003). Natural contamination with arsenic and other trace elements in ground waters of Argentine Pampean Plain. Science of the Total Environment, 309, 187–199.CrossRefGoogle Scholar
  8. Ferguson, J. F., & Gavis, J. (1972). A review of the arsenic cycle in natural waters. Water Research, 6, 1259–1274.CrossRefGoogle Scholar
  9. Gomez, J. J., Lillo, J., & Sahun, B. (2006). Naturally occurring arsenic in groundwater and identification of the geochemical sources in the Duero Cenozoic Basin. Spain Environ Geol, 50, 1151–1170.CrossRefGoogle Scholar
  10. Gonzalez del Tanago Chanrai, J., & Bellido, F. (1981). Estudio de los granitos de dos micas y del cortejo pegmatitico asociado en las inmediaciones del Cerro de San Pedro (Madrid) (Study of two-mica granites and associated pegmatite complexes in the Cerro de San Pedro, Madrid). J Iberian Geol, 7, 295–308.Google Scholar
  11. Gonzalez del Tanago Chanrai J., Gonzalez del Tanago del Río J. (2002). Minerales y minas de Madrid. (Minerals & Mines of Madrid). Ediciones Mundi-Prensa, Madrid, pp. 160.Google Scholar
  12. Hendershot, W. H., & Duquette, M. A. (1986). Simple barium-chloride method for determining cation-exchange capacity and exchangeable cations. Soil Science Society of America Journal, 50, 605–608.CrossRefGoogle Scholar
  13. Hernandez Garcia M.E. (1999). Estudio hidrogeologico, hidrogeoquimico y de contaminación del acuifero detritico Terciario en las areas urbana y periurbana de la Villa de Madrid (Hydrogeological, hydrogeochemical and pollution study of the Tertiary detrital aquifer in urban and peri-urban areas of the Madrid City) Tesis Doctoral Ed. Universidad Complutense Madrid, pp. 500.Google Scholar
  14. Hernandez Garcia, M. E., & Fernandez Ruiz, L. (2002). Presencia de arsenico de origen natural en las aguas subterraneas del acuífero detrítico del Terciario de Madrid (Presence of naturally occurring arsenic in groundwater of Madrid Tertiary detrital aquifer). Boletín Geologico y Minero, 113(2), 119–130.Google Scholar
  15. Hernandez Garcia, M. E., & Custodio, E. (2004). Natural baseline quality of Madrid Tertiary detrital aquifer groundwater (Spain): A basis for aquifer management. Environmental Geology, 46, 173–188.Google Scholar
  16. Hudson-Edwards, K. A., Houghton, S. L., & Osborn, A. (2004). Extraction and analysis of arsenic in soils and sediments. Trends in Analytical Chemistry, 23, 745–752.CrossRefGoogle Scholar
  17. Jimenez, R., Jorda, L., Jordá, R., & Prado, P. (2004). Mineria metalica en Madrid (Metal mining in Madrid). Revista Bocamina, 14, 53–89.Google Scholar
  18. Masscheleyn, P. H., Delaune, R. D., & Patrick, W. H., Jr. (1991). Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environmental Science and Technology, 25, 1414–1419.CrossRefGoogle Scholar
  19. Mossop, K. F., & Davidson, C. M. (2003). Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments. Analytica Chimica Acta, 478, 111–118.CrossRefGoogle Scholar
  20. Müller, K., Daus, B., Morgenstern, P., & Wennrich, R. (2007). Mobilization of antimony and arsenic in soil and sediment samples: Evaluation of different leaching procedures. Water, Air, and Soil Pollution, 183, 427–436.CrossRefGoogle Scholar
  21. Nieto, P., Custodio, E., & Manzano, M. (2005). Baseline groundwater quality: A European approach. Environmental Science & Policy, 8, 399–409.CrossRefGoogle Scholar
  22. Oliveira, V., Sarmiento, A. M., Gomez-Ariza, J. L., Nieto, J. M., & Sanchez-Rodas, D. (2006). New preservation method for inorganic arsenic speciation in acid mine drainage samples. Talanta, 69, 1182–1189.CrossRefGoogle Scholar
  23. Orden 2770/2006 de 11 de agosto, de la Consejería de Medio Ambiente y Ordenación del Territorio, por la que se procede al establecimiento de niveles genéricos de referencia de metales pesados y otros elementos traza en suelos contaminados de la Comunidad de Madrid (Standards of the Ministry of Environment and Spatial Planning to establish generic reference levels of heavy metals and other trace elements in contaminated soils of the Community of Madrid). Spain.Google Scholar
  24. O'Shea, B., Jankowski, J., & Sammut, J. (2007). The source of naturally occurring arsenic in a coastal sand aquifer of eastern Australia. Science of the Total Environment, 379, 151–166.CrossRefGoogle Scholar
  25. Reynolds, J. G., Naylor, D. V., & Fendorf, S. E. (1999). Arsenic sorption in phosphate amended soils during flooding and subsequent aeration. Soil Science Society of America Journal, 63, 1149–1156.CrossRefGoogle Scholar
  26. Redman, A. D., Macalady, D., & Ahmann, D. (2002). Natural organic matter affects arsenic speciation and sorption onto hematite. Environmental Science and Technology, 36, 2889–2896.CrossRefGoogle Scholar
  27. Rauret, G., Lopez-Sanchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., et al. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61.CrossRefGoogle Scholar
  28. Schippers, A., Jozsa, P. G., Kovacs, Z. M., Jelea, M., & Sand, W. (2001). Large-scale experiments for microbiological evaluation of measures for safeguarding sulfidic mine waste. Waste Manage (Oxford), 21, 139–146.CrossRefGoogle Scholar
  29. Sidle, W. C., Wotten, B., & Murphy, E. (2001). Provenance of geogenic arsenic in the Goose River basin, Maine. USA Environ Geol, 41, 62–73.CrossRefGoogle Scholar
  30. Stuben D., Berner Z., Chandrasekharam D., Karmakar J. (2001). Arsenic enrichment in groundwater of West Bengal, India: Geochemical evidence for mobilization of As under reducing conditions. 10th International Symposium on Water–Rock Interaction, Billasimius, Italy, pp. 1417–1434.Google Scholar
  31. Thanabalasingam, P., & Pickering, W. F. (1986). Arsenic sorption by humic acids. Environmental Pollution, 12, 223–246.Google Scholar
  32. Thomas, G. W. (1982). Exchangeable cations. In A. L. Page (Ed.), Methods of soil analysis. part 2. Chemical and microbiological properties (pp. 159–164). Madison: American Society of Agronomy.Google Scholar
  33. Van Herreweghe, S., Swennen, R., Vandecasteele, C., & Cappuyns, V. (2003). Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples. Environmental Pollution, 122(3), 323–342.CrossRefGoogle Scholar
  34. Voigt, D. E., Brantle, S. L., & Hennet, R. J. C. (1996). Chemical fixation of arsenic in contaminated soils. Applied Geochemistry, 11, 633–643.CrossRefGoogle Scholar
  35. Walkley, A., & Black, A. I. (1934). Organic matter was determined by wet digestion: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.CrossRefGoogle Scholar
  36. Wang, S. L., & Mulligan, C. N. (2006a). Natural attenuation processes for remediation of arsenic contaminated soils and groundwater. Journal of Hazardous Materials, 138, 459–470.CrossRefGoogle Scholar
  37. Wang, S., & Mulligan, C. N. (2006b). Natural attenuation processes for remediation of arsenic contaminated soils and groundwater. Journal of Hazardous Materials, 138, 459–470.CrossRefGoogle Scholar
  38. Wang, S., & Mulligan, C. N. (2008). Speciation and surface structure of inorganic arsenic in solid phases: A review. Environment International, 34, 867–879.CrossRefGoogle Scholar
  39. Yunmei, Y., Yongxuan, Z., Williams-Jones, A. E., Zhenmin, G., & Dexian, L. (2004). A kinetic study of the oxidation of arsenopyrite in acidic solutions: Implications for the environment. Applied Geochemistry, 19, 435–444.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Lorena Recio-Vazquez
    • 1
  • Javier Garcia-Guinea
    • 2
  • Pilar Carral
    • 3
  • Ana Maria Alvarez
    • 3
  • Fernando Garrido
    • 1
  1. 1.Centro de Ciencias Medioambientales (CSIC)MadridSpain
  2. 2.Museo Nacional de Ciencias Naturales (MNCN)MadridSpain
  3. 3.Departamento de Geología y Geoquímica, Facultad CienciasUniv. Autonoma MadridMadridSpain

Personalised recommendations