Skip to main content
Log in

Biodegradation of Methyl Tert-butyl Ether in a Bioreactor using Immobilized Methylibium petroleiphilum PM1 Cells

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Methylibium petroleiphilum PM1, which is capable of degrading of methyl tert-butyl ether (MTBE), was immobilized in calcium alginate gel beads. Various applications were explored to increase the mechanical strength of these gel beads. The introduction of 0.3 mol/L calcium chloride into the crosslinking solution, 0.002 mol/L calcium chloride into the growth medium, and 0.2% polyethyleneimine (PEI) as chemical crosslinking agent increased the stability of the Ca-alginate gel beads under the operation conditions of the bioreactor. The degradation rates of MTBE by the immobilized cells in the bioreactor system operated in batch and continuous mode , respectively, were compared. A MTBE biodegradation rate of 5.79 mg/L·h was reached for over 400 h (50 batches), and the immobilized cells in the bioreactor removed >96% MTBE during 50 days of operation. Molecular analysis of the PM1 cells revealed that microbial growth occurred predominantly as microcolonies in the outer area of the beads during the first 20 days of operation. The results of this study show that a continuous-mode, fixed-bed bioreactor reactor coupled with PM1-immobilized cells is a promising technology for remediating MTBE-contaminated groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baehr, A. L., Stackelberg, P. E., & Baker, R. J. (1999). Evaluation of the atmosphere as a source of volatile organic compounds in shallow groundwater. Water Resources Research, 35(1), 127–136.

    Article  CAS  Google Scholar 

  • Bahulekar, R., Ayyangar, N. R., & Ponrathnam, S. (1991). Polyethyleneimine in immobilization of biocatalysts[J]. Enzyme and Microbial Technology, 13(11), 858–868.

    Article  CAS  Google Scholar 

  • Bandhyopadhyay, K., Das, D., & Maiti, B. R. (1999). Solid matrix characterization of immobilized Pseudomonas putida MTCC 1194 used for phenol degradation. Applied Microbiology and Biotechnology, 51(6), 891–895.

    Article  CAS  Google Scholar 

  • Birnbaum, S., Pendleton, R., Larsson, P., & Mosbach, K. (1981). Covalent stabilization of alginate gel for the entrapment of living whole cells. Biotechnology Letters, 3(8), 393–400.

    Article  CAS  Google Scholar 

  • Calik, G., Savasci, H., Calik, P., & Ozdamar, T. H. (1999). Growth and κ-carrageenan immobilization of Pseudomonas dacunhae cells for L-alanine production. Enzyme and Microbial Technology, 24(1–2), 67–74.

    Article  CAS  Google Scholar 

  • Chen, D. Z., Chen, J. M., Zhong, W. H., & Cheng, Z. W. (2008). Degradation of methyl tert-butyl ether by gel immobilized Methylibium petroleiphilum PM1. Bioresource Technology, 99, 4702–4708.

    CAS  Google Scholar 

  • Cheng, Z. W., Chen, D. Z., Zhang, J. X., Zhong, W. H., & Chen, J. M. (2007). Biodegradation of methyl tert-butyl ether by immobilized predominant bacteria PMI. China Environmental Science, 27(6), 781–785.

    CAS  Google Scholar 

  • Chiu, Y. C., Lin, C. W., Kao, T. C., & Tang, X. Y. (2006). Biodegradation kinetics and effects of operating parameters on the performance of a methyl tert-butyl ether degrading biofilter. Water, Air, and Soil Pollution, 177(1–4), 399–410.

    Article  CAS  Google Scholar 

  • Dong, M. X., Ma, Z., & Chang, K. (2007). MTBE production technology and market prospect analyse. Petrochemical Industry Application, 26(1), 6–9.

    Google Scholar 

  • Fortin, N. Y., & Deshusses, M. A. (1999). Treatment of methyl tert-butyl ether vapors in biotrickling filters. 1. Reactor startup, steady-state performance, and culture characteristics. Environmental Science and Technology, 33(17), 2980–2986.

    Article  CAS  Google Scholar 

  • Hanson, J. R., Ackerman, C. E., & Scow, K. M. (1999). Biodegradation of methyl tert-butyl ether by a bacterial pure culture. Applied Microbiology and Biotechnology, 65(11), 4788–4792.

    CAS  Google Scholar 

  • Johnson, E. L., Smith, C. A., Kirk, T. O., & Michael, R. H. (2004). Induction of methyl tertiary butyl ether (MTBE)-oxidizing activity in Mycobacterium vaccae JOB5 by MTBE. Applied and Environment Microbiology, 70(2), 1023–1030.

    Article  CAS  Google Scholar 

  • Kaul, P., Banerjee, A., & Banerjee, U. C. (2006). Stereoselective nitrile hydrolysis by immobilized whole-cell biocatalyst. Biomacromolecules, 7(5), 1536–1541.

    Article  CAS  Google Scholar 

  • Kharoune, M., Pauss, A., & Lebeault, J. M. (2001). Aerobic biodegradation of an oxygenates mixture: ETBE, MTBE and TAME in an upflow fixed-bed reactor. Water Research, 35(7), 1665–1674.

    Article  CAS  Google Scholar 

  • Klinger, J., Stieler, C., Sacher, F., & Brauch, H. J. (2002). MTBE (methyl tertiary-butyl ether) in groundwaters: Monitoring results from Germany. Journal of Environmental Monitoring, 4(2), 276–279.

    Article  CAS  Google Scholar 

  • Landmeyer, J. E., Chapelle, F. H., Herlong, H. H., & Bradley, P. M. (2001) Methyl tert-butyl ether biodegradation by indigenous aquifer microorganisms under natural and artificial oxic conditions. Environmental Science and Technology, 35(6), 1118–1126.

    Google Scholar 

  • López, A., Lázaro, N., Morales, S., & Marqués, A. M. (2002). Nickel biosorption by free and immobilized cells of Pseudomonas fluorescens 4F39: A comparative study. Water, Air, and Soil Pollution, 135(1–4), 157–172.

    Article  Google Scholar 

  • Lyew, D., Guiot, S. R., Monot, F., & Fayolle-Guichard, F. (2007). Comparison of different support materials for their capacity to immobilize Mycobacterium austroafricanum IFP 2012 and to adsorb MTBE, 2007. Enzyme and Microbial Technology, 40, 1524–1530.

    Article  CAS  Google Scholar 

  • Milovanović, A., Božić, N., & Vujčić, Z. (2007). Cell wall invertase immobilization within calcium alginate beads. Food Chemistry, 104(1), 81–86.

    Article  Google Scholar 

  • Mo, K., Lora, C. O., Wanken, A. E., Javanmardian, M., Yang, X., & Kulpa, C. F. (1997). Biodegradation of methyl t-butyl ether by pure bacterial cultures. Applied Microbiology and Biotechnology, 47(1), 69–72.

    Article  CAS  Google Scholar 

  • Morrison, J. R., Suidan, M. T., & Venosa, A. D. (2002). Use of membrane bioreactor for biodegradation of MTBE in contaminated water. Journal of Environment Engineering, 128(9), 836–841.

    Article  CAS  Google Scholar 

  • Mosbach, K. (1987). Immobilized enzymes and cells–Part B, methods in enzymology. New York: Academic Press.

    Google Scholar 

  • Muyzer, G., de Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environment Microbiology, 59(3), 695–700.

    CAS  Google Scholar 

  • Nava, V., Morales, M., & Revah, S. (2007). Cometabolism of methyl tert-butyl ether (MTBE) with alkanes. Reviews in Environmental Science and Bio/Technology, 6(4), 339–352.

    Article  CAS  Google Scholar 

  • Office of Water, U.S. Environmental Protection Agency (EPA). (1997). Drinking water advisory: Consumer acceptability and health effects analysis on methyl tert-butyl ether (MTBE).” Rep. No. EPA 822-F-97-008. Washington, D.C: U.S. Government Printing Office.

    Google Scholar 

  • Okeke, B. C., & Frankenberger, W. T. (2003). Biodegradation of methyl tertiary butyl ether (MTBE) by a bacterial enrichment consortia and its monoculture isolates. Microbiological Research, 158(2), 99–106.

    Article  CAS  Google Scholar 

  • Robbins, G., Wang, S., & Stuart, J. (1993). Using the static headspace method to determine Henry’s law constants. Analytical Chemistry, 65(21), 3113–3118.

    Article  CAS  Google Scholar 

  • Shim, H., Shin, E. B., & Yang, S. T. (2002). A continuous fibrous-bed bioreactor for BTEX biodegradation by a co-culture of Pseudomonas putida and Pseudomonas fluorescens. Advances in Environmental Research, 7(1), 203–216.

    Article  CAS  Google Scholar 

  • Stephenson, R. M. (1992). Mutual solubilities: water-ketones, water-ethers, and water-gasoline-alcohols. Journal of Chemical and Engineering Data, 37(1), 80–95.

    Article  CAS  Google Scholar 

  • Suzuki, T., Yamaguchi, T., & Ishida, M. (1998). Immobilization of Prototheca zopfii in calcium-alginate beads for the degradation of hydrocarbons. Process Biochemistry, 33(5), 541–546.

    Article  CAS  Google Scholar 

  • Vainberg, S., Togna, A. P., Sutton, P. M., & Steffan, R. J. (2002). Treatment of MTBE-contaminated water in fluidized bed bioreactor. Journal of Environment Engineering, 128(9), 842–851.

    Article  CAS  Google Scholar 

  • Wang, J. L., Han, L. P., Shi, H. C., & Qian, Y. (2001). Biodegradation of quinoline by gel immobilized Burkholderia sp. Chemosphere, 44(5), 1041–1046.

    Article  Google Scholar 

  • Wilson, G. J., Pruden, A., Suidan, M. T., & Venosa, A. D. (2002). Biodegradation kinetics of MTBE in laboratory batch and continuous flow reactors. Journal of Environment Engineering, 128(9), 824–829.

    Article  CAS  Google Scholar 

  • Zein, M. M., Suidan, M. T., & Venosa, A. D. (2004). MTBE biodegradation in a gravity flow, high-biomass retaining bioreactor. Environmental Science and Technology, 38(12), 3449–3456.

    Article  CAS  Google Scholar 

  • Zhong, W. H., Chen, J. M., Lu, Z., Chen, D. Z., & Chen, X. (2007). Aerobic degradation of methyl tert-butyl ether by a Proteobacteria strain in a closed culture system. Journal of Environmental Sciences-China, 19(1), 18–22.

    Article  Google Scholar 

Download references

Acknowledgments

This study was sponsored by National Natural Science Foundation of China and Zhejiang Provincial XinMiao Talent Project (Grant Nos. 20476099 &2007G60G2020060). The authors are grateful to Dr. Kate M. Scow, with University of California at Davis, USA, for kindly supplying strains of PM1. In addition, our thanks also go to Xiao Chen and Jingxiao Zhang for their assistance in conducting the whole experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Meng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, ZW., Chen, JM., Chen, DZ. et al. Biodegradation of Methyl Tert-butyl Ether in a Bioreactor using Immobilized Methylibium petroleiphilum PM1 Cells. Water Air Soil Pollut 214, 59–72 (2011). https://doi.org/10.1007/s11270-010-0403-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0403-3

Keywords

Navigation