Skip to main content
Log in

Evaluation of Different Extraction Methods for the Assessment of Heavy Metal Bioavailability in Various Soils

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The main objective of this study was to compare the effectiveness of different methods (heavy metals in pore water (PW), diffusive gradients in thin films (DGT), diethylene triamine pentaacetic acid (DTPA) extraction, and total heavy metals (THM) in soil) for the assessment of heavy metal bioavailability from soils having various properties and heavy metal contents. The effect of soil heavy metal pollution on shoot yield and sulfatase enzyme activity was also studied. Wheat (Triticum aestivum) was grown in different soils from Spain (n = 10) and New Zealand (n = 20) in a constant environment room for 25 days. The bioavailabilities of Cd, Cr, Cu, Ni, Pb, and Zn were assessed by comparing the metal contents extracted by the different methods with those found in the roots. The most widely applicable method was DGT, as satisfactory Cu, Ni, Pb, and Zn root concentrations were obtained, and it was able to distinguish between low and high Cr values. The analysis of the metal concentrations in PW was effective for the determination of Cr, Ni, and Zn content in root. Copper and Pb root concentrations were satisfactorily assessed by DTPA extraction, but the method was less successful with determining the Ni and Cr contents and suitable just to distinguish between high and low concentrations of Zn. The THM in soil method satisfactorily predicted Cu and Pb root concentrations but could only be used to distinguish between low and high Cr and Zn values. The Cd root concentration was not successfully predicted for any of the used methods. Neither shoot yield nor sulfatase enzyme activity was affected by the metal concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adriano, D. C. (2001). Trace elements in terrestrial environments: Biochemistry, bioavailability, and risk of metals (2nd ed.). New York: Springer.

    Google Scholar 

  • Almås, Å. R., Bakken, L. R., & Mulder, J. (2004). Changes in tolerance of soil microbial communities in Zn and Cd contaminated soils. Soil Biology & Biochemistry, 36, 805–813.

    Article  Google Scholar 

  • Almås, Å. R., Lombnaes, P., Sogn, T. A., & Mulder, J. (2006). Speciation of Cd and Zn in contaminated soils assessed by DGT-DIFS, and WHAM/Model VI in relation to uptake by spinach and ryegrass. Chemosphere, 62, 1647–1655.

    Article  Google Scholar 

  • Alloway, B. J., & Jackson, A. P. (1991). The behaviour of heavy metals in sewage sludge-amended soils. Science of the Total Environment, 100, 151–176.

    Article  CAS  Google Scholar 

  • Bååth, E. (1989). Effects of heavy metals in soil on microbial processes and populations (a review). Water, Air, & Soil Pollution, 47, 335–379.

    Article  Google Scholar 

  • Basta, N. T., Ryan, J. A., & Chaney, R. L. (2005). Trace elements chemistry in residual-treated soil: key concepts and heavy metal bioavailability. Journal of Environmental Quality, 34, 49–63.

    CAS  Google Scholar 

  • Blakemore, L. C., Searle, P. L., & Daly, B. K. (1987). Methods for chemical analysis of soils. New Zealand Soil Bureau Scientific Report No. 80. Lower Hutt: New Zealand Soil Bureau.

    Google Scholar 

  • Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen total. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis, Part 2. Chemical and microbiological properties (pp. 595–624). Madison: ASA and SSSA.

    Google Scholar 

  • Brun, L. A., Maillet, J., Hinsinger, P., & Pépin, M. (2001). Evaluation of copper availability to plants in copper-contaminated vineyard soils. Environmental Pollution, 111, 293–302.

    Article  CAS  Google Scholar 

  • Chaignon, V., Sánchez-Neira, I., Herrmann, P., Jaillard, B., & Hinsinger, P. (2003). Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vine-growing area. Environmental Pollution, 123, 229–238.

    Article  CAS  Google Scholar 

  • Davison, W., & Zhang, H. (1994). In situ speciation measurements of trace components in natural waters using thin-film gels. Nature, 367, 546–548.

    Article  CAS  Google Scholar 

  • Dolgen, D., Alpaslan, M. N., & Delen, N. (2007). Agricultural recycling of treatment-plant sludge: A case study for a vegetable-processing factory. Journal of Environmental Management, 84, 274–281.

    Article  CAS  Google Scholar 

  • Feng, M. H., Shan, X. Q., Zhang, S. Z., & Wen, B. (2005a). Comparison of a rhizosphere-based method with other one-step extraction methods for assessing the bioavailability of soil metals to wheat. Chemosphere, 59, 939–949.

    Article  CAS  Google Scholar 

  • Feng, M. H., Shan, X. Q., Zhang, S. Z., & Wen, B. (2005b). A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley. Environmental Pollution, 137, 231–240.

    Article  CAS  Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of soil analysis 1: Physical and mineralogical methods (2nd ed., pp. 383–411). Madison: ASA and SSSA.

    Google Scholar 

  • Giller, K. E., Witter, E., & McGrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biology & Biochemistry, 30, 1389–1414.

    Article  CAS  Google Scholar 

  • Gray, C. W., & Mclaren, R. G. (2006). Soil factors affecting heavy metal solubility in some New Zealand soils. Water, Air, & Soil Pollution, 175, 3–14.

    Article  CAS  Google Scholar 

  • Hooda, P. S., & Alloway, B. J. (1994). The plant availability and DTPA extractability of trace metals in sludge-amended soils. Science of the Total Environment, 149, 39–51.

    Article  CAS  Google Scholar 

  • Hooda, P. S., McNulty, D., Alloway, B. J., & Aitken, M. N. (1997). Plant availability of heavy metals in soils previously amended with heavy applications of sewage sludge. Journal of the Science of Food & Agriculture, 73, 446–454.

    Article  CAS  Google Scholar 

  • Hooda, P. S., Zhang, H., Davison, W., & Edwards, A. C. (1999). Measuring bioavailable trace metals by diffusive gradients in thin films (DGT): Soil moisture effects on its performance in soils. European Journal of Soil Science, 50, 285–294.

    Article  CAS  Google Scholar 

  • Horswell, J., Speir, T. W., & van Schaik, A. P. (2003). Bio-indicators to assess impacts of heavy metals in land-applied sewage sludge. Soil Biology & Biochemistry, 35, 1501–1505.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2004). Soil-plant transfer of trace elements—an environmental issue. Geoderma, 122, 143–149.

    Article  CAS  Google Scholar 

  • Kalis, E. J. J., Temminghoff, E. J. M., Town, R. M., Unsworth, E. R., & van Riemsdijk, W. H. (2008). Relationship between metal speciation in soil solution and metal adsorption at the root surface of ryegrass. Journal of Environmental Quality, 37, 2221–2231.

    Article  CAS  Google Scholar 

  • Kovács, B., Prokisch, J., Györi, Z., Kovács, A. B., & Palencsár, J. (2000). Studies on soil sample preparation for inductively coupled plasma atomic emission spectrometry analysis. Communications in Soil Science & Plant Analysis, 31, 1949–1963.

    Article  Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42, 421–428.

    Article  CAS  Google Scholar 

  • Lofts, S., Spurgeon, D. J., Svendsen, C., & Tipping, E. (2004). Deriving soil critical limits for Cu, Zn, Cd, and pH: A method based on free ion concentrations. Environmental Science & Technology, 38, 3623–3631.

    Article  CAS  Google Scholar 

  • Mamais, D., Kouzeli-Katsiri, A., Christoulas, D. G., Andreadakis, A. D., & Aftias, E. (2000). Evaluation of agricultural utilization of the sludge produced at Psyttalia wastewater treatment plant. Water Science & Technology, 42, 21–28.

    CAS  Google Scholar 

  • Mbila, M. O., Thompson, M. L., Mbagwu, J. S. C., & Laird, D. A. (2001). Distribution and movement of sludge-derived trace metals in selected Nigerian soils. Journal of Environmental Quality, 30, 1667–1674.

    Article  CAS  Google Scholar 

  • McBride, M. B., Richards, B. K., Steenhuis, T., Russo, J. J., & Sauvé, S. (1997a). Mobility and solubility of toxic metals and nutrients in soil fifteen years after sludge application. Soil Science, 162, 487–500.

    Article  CAS  Google Scholar 

  • McBride, M., Sauvé, S., & Hendershot, W. (1997b). Solubility control of Cu, Zn, Cd and Pb in contaminated soils. European Journal of Soil Science, 48, 337–346.

    Article  CAS  Google Scholar 

  • McBride, M. B., Nibarger, E. A., Richards, B. K., & Steenhuis, T. (2003). Trace metal accumulation by red clover grown on sewage sludge-amended soils and correlation to Mehlich 3 and calcium chloride-extractable metals. Soil Science, 168, 29–38.

    Article  CAS  Google Scholar 

  • McLaughlin, M. J. (2002). Bioavailability of metals to terrestrial plants. In H. E. Allen (Ed.), Bioavailability of metals in terrestrial ecosystems: Importance of partioning for bioavailability to invertebrates, microbes, and plants (pp. 39–68). Pensacola: SETAC Press.

    Google Scholar 

  • McLaughlin, M. J., Hamon, R. E., McLaren, R. G., Speir, T. W., & Rogers, S. L. (2000a). A bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Australian Journal of Soil Research, 38, 1037–1086.

    Article  CAS  Google Scholar 

  • McLaughlin, M. J., Zarcinas, B. A., Stevens, D. P., & Cook, N. (2000b). Soil testing for heavy metals. Communications in Soil Science & Plant Analysis, 31, 1661–1700.

    Article  CAS  Google Scholar 

  • Meers, E., Samson, R., Tack, F. M. G., Ruttens, A., Vandegehuchte, M., Vangronsveld, J., et al. (2007). Phytoavailability assessment of heavy metals in soils by single extractions and accumulation in Phaseolus vulgaris. Environmental & Experimental Botany, 60, 385–396.

    Article  CAS  Google Scholar 

  • Menzies, N. W., Donn, M. J., & Kopittke, P. M. (2007). Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environmental Pollution, 145, 121–130.

    Article  CAS  Google Scholar 

  • Nelson, D. V., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. In A. L. Page (Ed.), Methods of soil analysis, part 2: Chemical and biological methods (pp. 539–579). Madison: ASA and SSSA.

    Google Scholar 

  • Nolan, A. L., Zhang, H., & McLaughlin, M. J. (2005). Prediction of zinc, cadmium, lead, and copper availability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotopic dilution techniques. Journal of Environmental Quality, 34, 496–507.

    Article  CAS  Google Scholar 

  • Nowack, B., Koehler, S., & Schulin, R. (2004). Use of diffusive gradients in thin films (DGT) in undisturbed field soils. Environmental Science & Technology, 38, 1133–1138.

    Article  CAS  Google Scholar 

  • O’Connor, G. A. (1988). Use and misuse of the DTPA soil test. Journal of Environmental Quality, 17, 715–718.

    Article  Google Scholar 

  • Pierzynski, G. M. (1998). Past, present, and future approaches for testing metals for environmental concerns and regulatory approaches. Communications in Soil Science & Plant Analysis, 29, 1523–1536.

    Article  CAS  Google Scholar 

  • Qian, J., Wang, Z. J., Shan, X. Q., Tu, Q., Wen, B., & Chen, B. (1996). Evaluation of plant availability of soil trace metals by chemical fractionation and multiple regression analysis. Environmental Pollution, 91, 309–315.

    Article  CAS  Google Scholar 

  • Rauret, G., López-Sánchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., et al. (1999). Improvement of BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61.

    Article  CAS  Google Scholar 

  • Soriano-Disla, J. M., Gómez, I., Navarro-Pedreño, J., & Lag-Brotons, A. (2010). Evaluation of single chemical extractants for the prediction of heavy metal uptake by barley in soils amended with polluted sewage sludge. Plant and Soil, 327, 303–314.

    Article  CAS  Google Scholar 

  • Speir, T. W., Ross, D. J., & Orchard, V. A. (1984). Spatial variability of biochemical properties in a taxonomically-uniform soil under grazed pasture. Soil Biology & Biochemistry, 16, 153–160.

    Article  CAS  Google Scholar 

  • Speir, T. W., Kettles, H. A., Percival, H. J., & Parshotam, A. (1999). Is soil acidification the cause of biochemical responses when soils are amended with heavy metal salts? Soil Biology & Biochemistry, 31, 1953–1961.

    Article  CAS  Google Scholar 

  • Speir, T. W., van Schaik, A. P., Hunter, L. C., Ryburn, J. L., & Percival, H. J. (2007). Attempts to derive EC50 values for heavy metals from land applied Cu-, Ni-, and Zn-spiked sewage sludge. Soil Biology & Biochemistry, 39, 539–549.

    Article  CAS  Google Scholar 

  • Tabatabai, M. A., & Bremner, J. M. (1970). Arylsulphatase activity of soils. Soil Science Society of America Proceedings, 34, 225–229.

    Article  CAS  Google Scholar 

  • Tack, F. M. G., & Verloo, M. G. (1995). Chemical speciation and fractionation in soil and sediment heavy metal analysis: A review. International Journal of Environmental Analytical Chemistry, 59, 225–238.

    Article  CAS  Google Scholar 

  • Temminghoff, E. J. M., Plette, A. C. C., van Eck, R., & van Riemsdijk, W. H. (2000). Determination of the chemical speciation of trace metals in aqueous systems by the Wageningen Donnan membrane technique. Analytica Chimica Acta, 417, 149–157.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Thakali, S., Allen, H. E., Di Toro, D. M., Ponizovsky, A. A., Rooney, C. P., Zhao, F. J., et al. (2006). A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicities to barley root elongation in soils. Environmental Science & Technology, 40, 7085–7093.

    Article  CAS  Google Scholar 

  • Tian, Y., Wang, X., Luo, J., Yu, H., & Zhang, H. (2008). Evaluation of holistic approaches to predicting the concentration of metals in field-cultivated rice. Environmental Science & Technology, 42, 7649–7654.

    Article  CAS  Google Scholar 

  • Tipping, E. (1998). Humic ion-binding model VI: An improved description of the interactions of protons and metal ions with humic substances. Aquatic Geochemistry, 4, 3–48.

    Article  CAS  Google Scholar 

  • Ure, A. M. (1995). Methods of analysis for heavy metals in soils. In B. J. Alloway (Ed.), Heavy metals in soils (2nd ed., pp. 58–102). Glasgow: Blackie Academic and Professional.

    Google Scholar 

  • Zhang, H., Davison, W., Knight, B., & McGrath, S. (1998). In situ measurement of solution concentrations and fluxes of trace metals in soils using DGT. Environmental Science & Technology, 32, 704–710.

    Article  CAS  Google Scholar 

  • Zhang, H., Zhao, F. J., Sun, B., Davison, W., & McGrath, S. P. (2001). A new method to measure effective soil solution concentration predicts copper availability to plants. Environmental Science & Technology, 35, 2602–2607.

    Article  CAS  Google Scholar 

  • Zhang, H., Lombi, E., Smolders, E., & McGrath, S. (2004). Kinetics of Zn release in soils and prediction of Zn concentration in plants using diffusive gradients in thin films. Environmental Science & Technology, 38, 3608–3613.

    Article  CAS  Google Scholar 

  • Zhao, F. J., Rooney, C. P., Zhang, H., & McGrath, S. P. (2006). Comparison of soil solution speciation and diffusive gradients in thin films measurement as an indicator of copper bioavailability to plants. Environmental Toxicology & Biochemistry, 25, 733–742.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

José M. Soriano gratefully acknowledges the Spanish Ministry of Science and Innovation for a research fellowship (AP2005-0320) and colleagues from the Institute of Environmental Science and Research (Porirua, New Zealand) and from the Center for Soil and Environmental Quality (Lincoln University, New Zealand).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Martin Soriano-Disla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soriano-Disla, J.M., Speir, T.W., Gómez, I. et al. Evaluation of Different Extraction Methods for the Assessment of Heavy Metal Bioavailability in Various Soils. Water Air Soil Pollut 213, 471–483 (2010). https://doi.org/10.1007/s11270-010-0400-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0400-6

Keywords

Navigation