Skip to main content
Log in

Evaluation of Physicochemical Methods for Treatment of Cu, Pb, Sb, and Zn in Canadian Small Arm Firing Ranges Backstop Soils

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This paper presents the results of physicochemical treatment on Pb-, Cu-, Sb-, and Zn-contaminated Canadian small arm firing range (SAFR) backstop soils in order to evaluate the potential of such methods for remediation of SAFR backstop soils. Remediation target for the treatment assays was to attain the Québec Department of Environment commercial C criterion or more realistically, to reach the soil burial D criterion. Two treatment lines (TL) were evaluated. TL-1, consisting of jig and Wilfley table (WT) treatments on the 0.5–3 mm and 53–500 μm soil size fractions (SF), respectively, and chemical leaching on the <53 μm SF and TL-2, consisting of jig on the 1–4 mm SF, spiral, and WT treatments on 250 μm–1 mm SF, and Kelsey jig assays on the <250 μm SF. For both TL, the untreated SF (>3 mm for TL-1; >4 mm for TL-2), and the gravimetric separation concentrates could be sent for recycling in smelter facilities. Results showed that the finer SF (<53 μm SF for TL-1; <250 μm SF for TL-2) were very difficult to treat. Even with metal removed mass proportions up to 78% for Pb, concentrations were still very high after chemical leaching; and the Kelsey jig showed deceiving metal removed mass proportions (up to 47% for Pb). In both TL, the jig and the WT showed Pb removed mass proportions up to 98% and treated mass proportions up to 77% in their respective SF. Whole process efficiencies in the cleaned soils showed that TL-1 led to the remediation of up to 65% of the initial total soil, and TL-2, 36%. TL-1 and TL-2 results showed that the WT effectively treated soils of 53 μm–1 mm SF, and the jig, soils of the 1–4 mm SF. Our study shows that gravimetric concentration techniques are very promising for the treatment of SAFR backstop soils, and further research has to be done in order to treat the SF lower than 53 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alex-Sol, Institut national de la recherche scientifique (INRS) (1999). Soil and sediment decontamination by a physical, chemical and biological metal-separation process. St. Lawrence Technologies data sheets. Environment Canada, Eco-Technology Innovation Section, Montréal, QC, Canada.

  • ART Engineering LCC (2009). Soil washing, soil decontamination, soil cleaning, sediment treatment, soil and groundwater remediation project experience. http://www.art-engineering.com/Projects%20Soil%20Treatment.htm#top, August 2009.

  • Bannon, D. I., Drexler, J. W., Fent, G. M., Casteel, S. W., Hunter, P. J., Brattin, W. J., et al. (2009). Evaluation of small arms range soils for metal contamination and lead bioavailability. Environmental Science and Technology, 43, 9071–9076.

    Article  CAS  Google Scholar 

  • Clausen, J., & Korte, N. (2009). The distribution of metals in soils and pore water at three U.S. military training facilities. Soil and Sediment Contamination, 18, 546–563.

    CAS  Google Scholar 

  • Dermont, G., Bergeron, M., Mercier, G., & Richer-Laflèche, M. (2008a). Soil washing for metal removal: A review of physical/chemical technologies and field applications. Journal of Hazardous Materials, 152, 1–31.

    Article  CAS  Google Scholar 

  • Dermont, G., Bergeron, M., Mercier, G., & Richer-Laflèche, M. (2008b). Metal-contaminated soils remediation practices and treatment technologies. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 12, 188–209.

    Article  CAS  Google Scholar 

  • Djedidi, Z., Drogui, P., Ben Cheikh, R., Mercier, G., & Blais, J. F. (2005). Laboratory study of successive soil saline leaching and electrochemical lead recovery. Journal of Environmental Engineering (ASCE), 131, 305–314.

    Article  CAS  Google Scholar 

  • Environmental Security Technology Certification Program (ESTCP). (1997). Joint small arms range remediation, cost and performance report. Arlington: USDOD.

    Google Scholar 

  • Federal Remediation Technologies Roundtable (FRTR). (2007a). Remediation technologies screening matrix and reference guides, version 4.0. http://www.frtr.gov/matrix2/top_page.html, August, 2009.

  • Federal Remediation Technologies Roundtable (FRTR). (2007b). The table 3-8 completed projects: Ex situ physical /chemical treatment for soil, sediment, sludge, http://www.frtr.gov/matrix2/section3/table3_8_nfr.html, August, 2009

  • Gill, C. B. (1991). Materials benefication. Springer-Verlag, éditeur. New York, USA. Page 245.

  • Gosselin, A., Blackburn, D., & Bergeron, M. (1999). Protocole d’évaluation de la traitabilité des sediments, des sols et des boues à l’aide des technologies minéralurgiques (in french). Section Éco-innovation technologique. Programme de développement et de démonstration technologiques. Direction de la Protection de l’Environnement. Environnement Canada. p. 134.

  • Hall, D., & Holbein, B. E. (1993). Integrated treatment of heavy metal and organic contaminated industrial soils. Soil remediation symposium Québec city, Québec Canada, September 1993, 151–195.

  • Hardison, D. W., Jr., Ma, L. Q., Luongo, T., & Harris, W. G. (2004). Lead contamination in shooting range soils from abrasion of lead bullets and subsequent weathering. Science of the Total Environment, 328, 175–183.

    Article  CAS  Google Scholar 

  • Hintikka, V., Parvinen, P., Stén, P., Laukkanen, J., & Leppinen, J. (2001). Remediation of soils contaminated by lead and copper-containing rifle bullets. Geological Survey of Finland, 32, 151–157.

    Google Scholar 

  • Honders, A., Maas, Th., & Gadella, J. M. (2009). Ex-situ treatment of contaminated soil – the Dutch Experience. Service Center Ground (SCG), The Netherlands http://www.scg.nl/SCG/files/treatment.pdf, August 2009.

  • Interstate Technology and Regulatory Council (ITRC). (2003). Characterization and remediation of soils at closed small arms firing ranges. Washington: Technical/Regulatory Guidelines.

    Google Scholar 

  • Jones, T. A., & Erasmus, W. (2006). Efficient enhanced gravity recovery of zircon using the Kelsey centrifugal jig. The South African Institute of Mining and Metallurgy. DMS and gravity concentration operations and technology in South Africa. W. Dworzanowski, éditor. Johannesburg, pp. 87–108.

  • Lang, D. D., & Mourato, D. (1993). Results of the Toronto harbour commissioners soil recycling demonstration project. p. 42.

  • Laporte-Saumure, M., Martel, R., & Mercier, G. (2007). L’évaluation de la composition et des propriétés chimiques et physiques des sédiments des buttes de tir (in french). Confidential research report R-850-e2, March 2007. INRS-ETE, Québec city, Canada, p. 60.

  • Laporte-Saumure, M., Martel, R., Mercier, G., & Brochu, S. (2009). Instrumentation d’une butte de tir expérimentale, évaluation de la qualité de l’eau sous une butte de tir en opération et essais de traitement des sols (in french). Confidential research report R-1117, December 2009. INRS-ETE, Québec city, Canada, p. 97.

  • Mann, M. J. (1999). Full-scale and pilot-scale soil washing. Journal of Hazardous Materials, 66, 119–136.

    Article  CAS  Google Scholar 

  • Manninen, S., & Tanskanen, N. (1993). Transfer of lead from shotgun pellets to humus and three plant species in a Finnish shooting range. Archives of Environmental Contamination and Toxicology, 24, 410–414.

    Article  CAS  Google Scholar 

  • Marino, M. A., Brica, R. M., & Neale, C. N. (1997). Heavy metal soil remediation; the effects of attrition scrubbing on a wet gravity concentration process. Environmental Progress, 16, 208–214.

    Article  CAS  Google Scholar 

  • MDDEP of Québec. (1999). Politique de protection des sols et de réhabilitation des terrains contaminés (in french). Québec: Les Publications du Québec.

    Google Scholar 

  • Mellor, A., & McCartney, C. (1994). The effects of lead shot deposition on soils and crops at a clay pigeon shooting site in northern England Soil. Soil Use and Management, 10, 124–129.

    Article  Google Scholar 

  • Mercier, G. (2000). Disponibilité des métaux dans les sols et prévisiondu rendement d’enlèvement par des techniques minéralurgiques (in french). Ph D thesis, Laval University, Québec city, Québec, Canada. p. 277.

  • Mercier, G., Chartier, M., & Couillard, D. (1996). Strategies to maximize the microbial leaching of lead from metal-contaminated aquatic sediments. Water Research, 30, 2452–2464.

    Article  CAS  Google Scholar 

  • Mercier, G., Duchesne, J., & Blackburn, D. (2001). Prediction of metal removal efficiency from contaminated soils by physical methods. Journal of Environmental Engineering (ASCE), 127, 348–358.

    Article  CAS  Google Scholar 

  • Mercier, G., Duchesne, J., & Carles-Gibergues, A. (2002a). A simple and fast screening test to detect soils polluted by lead. Environmental Pollution, 118, 285–296.

    Article  CAS  Google Scholar 

  • Mercier, G., Duchesne, J., & Blackburn, D. (2002b). Mineral processing technology followed by chemical leaching to remove mobile metals from contaminated soils. Water, Air, and Soil Pollution, 135, 105–130.

    Article  CAS  Google Scholar 

  • Mercier, G., Blais, J.-F., & Chartier, M. (2007). Décontamination à l’échelle pilote de sols pollués en métaux toxiques par des procédés miniers et lixiviation chimique (in french). Journal of Environmental Engineering and Science, 6, 53–64.

    Article  CAS  Google Scholar 

  • Murray, K., Bazzi, A., Carter, C., Ehlert, A., Harris, A., Kopec, M., et al. (1997). Distribution and mobility of lead in soils at an outdoor shooting range. Journal of Soil Contamination, 6, 79–93.

    CAS  Google Scholar 

  • North Atlantic Treaty Organization’s Committee on the Challenges of Modern Society (NATO/CCMS). (1998). Evaluation of demonstrated and emerging technologies for the treatment and clean up of contaminated land and groundwater. Pilot Study, Phase II final report No. 219. Brussels, Belgium.

  • Nedwed, T., & Clifford, D. A. (2000). Feasibility of extracting lead from lead battery recycling site soil using high concentration chloride solutions. Environmental Progress, 19, 197–206.

    Article  CAS  Google Scholar 

  • New Jersey Department of Environmental Protection (NJDEP). (2001). Certification Report for New Jersey Corporation for Advanced Technology (NJACT) Verification of Brice Environmental Services Corporation (Soil Washing Process).

  • Rikers, R. A., Rem, P., Dalrnijn, W. L., & Honders, A. (1998). Characterïzation of heavy metals in soil by high gradient magnetic separator. Journal of Soi1 Contamination, 7, 163–190.

    Article  CAS  Google Scholar 

  • Rooney, C. P., Mclaren, R. G., & Cresswell, R. J. (1999). Distribution and phytoavailability of lead in a soil contaminated with lead shot. Water, Air, and Soil Pollution, 116, 535–548.

    Article  CAS  Google Scholar 

  • Stansley, W., & Roscoe, D. E. (1996). The uptake and effects of lead in small mammals and frogs at a trap and skeet range. Archives of Environmental Contamination and Toxicology, 30, 220–226.

    Article  CAS  Google Scholar 

  • Tucker, P. (1995). Technical note—Modelling of the Kelsey centrifugal jig. Minerals Engineering, 8, 333–336.

    Article  CAS  Google Scholar 

  • U.S. Environmnetal Protection Agency. (1993). Toronto Harbour Commissioners (THC) Soil Recycle Treatment Train, Applications Analysis Report, EPA/540/AR-93/517, Risk Reduction Engineering Laboratory. Office of Research and Development, Cincinnati, OH.

  • U.S. Environmental Protection Agency. (1995a). BESCORP soil washing system for lead battery site treatment. Applications Analysis Report, EPA/540/AR-93/503. Office of Research and Development, Cincinnati, OH.

  • U.S. Environmental Protection Agency. (1995b). Bergman USA soil sediment washing technology. Applications Analysis Report, EPA/540/AR-92/075. Office of Research and Development, Cincinnati, OH.

  • U.S. Environmnetal Protection Agency. (1995c). Contaminants and remedial options at selected metal-contaminated sites, EPA/540/R-95/512. Washington: Office of Research and Development.

    Google Scholar 

  • U.S. Environmental Protection Agency. (2000). Innovative remediation technologies: Field-scale demonstration projects in North America. EPA/542/B/00/004 (2nd ed.). Washington: Office of Solid Waste and Emergency Response.

    Google Scholar 

  • U.S. Environmental Protection Agency. (2001). Best management practices for lead at outdoor shooting ranges. EPA-902-B01-001. United States Environmental Protection Agency, region 2.

  • U.S. Environmental Protection Agency test method 1312. (1994). Synthetic Precipitation Leaching Procedure (SPLP). Test Methods for Evaluating Solid Wastes. Protocol available at http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/1312.pdf. February 2010.

  • Van Benschoten, J. E., Matsumoto, M. R., & Young, W. H. (1997). Evaluation and analysis of soil washing for seven lead-contaminated soils. Journal of Environmental Engineering (ASCE), 123, 217–224.

    Article  Google Scholar 

  • Weiss, N. L. (Ed.). (1985). SME mineral processing handbook, Vol. 1. New York: Society of Mining Engineers.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Director of Land and Environment (DLE) of the Department of National Defense of Canada for funding; the Canadian Force Bases (CFB) Environment Officers Kelly Sturgess, Garnet Shearer, and Sheldon Down; Sylvie Brochu of Defense Research and Development Canada (DRDC-Valcartier); the Range Control staff of Valcartier, especially Master Warrant Officer Lafleur; Myriam Chartier, Clarisse Deschênes-Rancourt, Roxanne Saint-Laurent and Mohamed Ayad for their useful assistance; Jacques Dumas, Jean Robitaille and Frédéric Bergeron of the Consortium en Recherche Minérale; and Michelle Bordeleau, René Rodrigue, and Philippe Girard for chemical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Laporte-Saumure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laporte-Saumure, M., Martel, R. & Mercier, G. Evaluation of Physicochemical Methods for Treatment of Cu, Pb, Sb, and Zn in Canadian Small Arm Firing Ranges Backstop Soils. Water Air Soil Pollut 213, 171–189 (2010). https://doi.org/10.1007/s11270-010-0376-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0376-2

Keywords

Navigation