Skip to main content
Log in

Behaviour and Fluxes of Dissolved Antibiotics, Analgesics and Hormones During Flood Events in a Small Heterogeneous Catchment in the Grand Duchy of Luxembourg

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The objective of this investigation is to analyse the variations of xenobiotic concentrations and the fluxes of dissolved xenobiotics during runoff events in the small rural Mess catchment (35 km2) in the Southwestern part of Luxembourg. Sulfonamides, tetracyclines, analgesics and hormones, dissolved nutrients, sulphate and chloride were measured to gather information about runoff generation. Typically, the highest values can be found during the first flush mainly in the rising limb of the flood hydrographs. The highest concentrations in eleven flood events are measured for ibuprofen (2,383 ng l-1), estrone (27 ng l-1) and diclofenac (20 ng l-1). From the tetracycline group tetracycline (9 ng l-1) itself is of relevance, while the sulfonamides are mainly represented by sulfamethoxazole (5 ng l-1). The variable patterns of chemographs are attributed to the heterogeneous runoff generation characterised by different reactions of storm overflows from the combined sewer systems. During single flood events, the fluxes of ibuprofen (maximum 24,000 mg), 17α-ethinylestradiol (122 mg), 17β-estradiol (32 mg) or estrone (274 mg) are rather low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahrer, W., Scherwenk, E., & Buchberger, W. (2001). Determination of drug residues in water by the combination of liquid chromatography or capillary electrophoresis with electrospray mass spectrometry. Journal of Chromatography A, 910, 69–78. doi:10.1016/S0021-9673(00)01187-0.

    Article  CAS  Google Scholar 

  • Andersen, H. R., Hansen, M., Kjolholt, J., Stuer-Lauridsen, F., Ternes, T., & Halling-Sorensen, B. (2005). Assessment of the importance of sorption for steroid estrogens removal during activated sludge treatment. Chemosphere, 61, 139–146. doi:10.1016/j.chemosphere.2005.02.088.

    Article  CAS  Google Scholar 

  • Babić, S., Ašperger, D., Mutavdžić, D., Horvat, A. J. M., & Kaštelan-Macan, M. (2006). Solid phase extraction and HPLC determination of veterinary pharmaceuticals in wastewater. Talanta, 70, 732–738. doi:10.1016/j.talanta.2006.07.003.

    Article  CAS  Google Scholar 

  • Bester, K., Scholes, L., Wahlberg, C., & McArdell, C. S. (2008). Sources and mass flows of xenobiotics in urban water cycles—an overview on current knowledge and data gaps. Water Air and Soil Pollution Focus, 8, 407–423. doi:10.1007/s11267-008-9189-3.

    Article  CAS  Google Scholar 

  • Cargouët, M., Perdiz, D., Mouatassim-Souali, A., Tamisier-Karolak, S., & Levi, Y. (2004). Assessment of river contamination by estrogenic compounds in Paris areas (France). The Science of the Total Environment, 324, 55–66. doi:10.1016/j.scitotenv.2003.10.035.

    Article  CAS  Google Scholar 

  • Charles, K., Ashbold, N., Ferguson, C., Roser, D., Mc Guinness, R., & Deere, D. (2003). Centralized versus decentralized sewage systems: a comparison of pathogen and nutrient loads released into Sydney’s drinking water catchments. Water Science and Technology, 48, 53–60.

    CAS  Google Scholar 

  • Daughton, C. G. (2004). Non-regulated water contaminants: emerging research. Environmental Impact Assessment Review, 24, 711–732. doi:10.1016/j.eiar.2004.06.003.

    Article  Google Scholar 

  • Davi, M. L., & Gnudi, F. (1999). Phenolic compounds in surface water. Water Research, 33(14), 3213–3219. doi:10.1016/S0043-1354(99)00027-5.

    Article  CAS  Google Scholar 

  • Díaz-Cruz, M. S., & Barceló, D. (2005). LC–MS2 trace analysis of antimicrobials in water, sediment and soil. Trends in Analytical Chemistry, 24, 645–657. doi:10.1016/j.trac.2005.05.005.

    Article  CAS  Google Scholar 

  • Didszun, J., & Uhlenbrook, S. (2008). Scaling of dominant runoff generation processes: nested catchments approach using multiple tracers. Water Resources Research, doi:10.1029/2006 WR 005242

  • Donald, D. B., Cessna, A. J., Sverko, E., & Glozier, N. E. (2007). Pesticides in surface drinking-water supplies of the northern Great Plains. Environmental Health Perspectives, 115, 1183–1191.

    Article  CAS  Google Scholar 

  • Dorabawila, N., & Gupta, G. (2005). Endocrine disrupter—estradiol—in Chesapeake Bay tributaries. Journal of Hazardous Materials, 120, 67–71. doi:10.1016/j.jhazmat.2004.12.031.

    Article  CAS  Google Scholar 

  • Elrashidi, M. A., Mays, M. D., Peaslee, S. D., & Hooper, D. G. (2005). A technique to estimate nitrate-nitrogen loss by runoff and leaching for agricultural land, Lancaster County, Nebraska. Communications in Soil Science and Plant Analysis, 35, 2593–2615. doi:10.1081/CSS-200030396.

    Article  CAS  Google Scholar 

  • Erickson, B. E. (2002). Analyzing the ignored environmental contaminants. Environmental Science & Technology, 36, 140–145. doi:10.1021/es022497d.

    Article  Google Scholar 

  • Gabet, V., Miège, C., Bados, P., & Coquery, M. (2007). Analysis of estrogens in environmental matrices. Trends in Analytical Chemistry, 26, 1113–1131. doi:10.1016/j.trac.2007.10.003.

    Article  CAS  Google Scholar 

  • Gros, M., Petrovic, M., & Barceló, D. (2006). Development of a multi-residue analytical methodology based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters. Talanta, 70, 678–690. doi:10.1016/j.talanta.2006.05.024.

    Article  CAS  Google Scholar 

  • Halling-Sorensen, B., Nielsen, S. N., Lanzky, P. F., Ingerslev, F., Lutzheft, H. C. H., & Jorgensen, S. E. (1998). Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere, 36, 357–393. doi:10.1016/S0045-6535(97)00354-8.

    Article  CAS  Google Scholar 

  • Hanselmann, T. A., Graetz, D. A., & Wilkie, A. C. (2003). Manure-borne estrogens as potential environmental contaminants: a review. Environmental Science & Technology, 24, 5471–5478. doi:10.1021/es034410+.

    Article  CAS  Google Scholar 

  • Hatt, B. E., Fletcher, T. D., Walch, C. J., & Taylor, S. L. (2004). The influence of urban density and drainage infrastructure on the concentrations and loads of pollutants in small streams. Environmental Management, 34, 112–124. doi:10.1007/s00267-004-0221-8.

    Article  Google Scholar 

  • Heberer, T. (2002a). Tracking persistent pharmaceutical residues from municipal sewage to drinking water. Journal of Hydrology (Amsterdam), 266, 175–189. doi:10.1016/S0022-1694(02)00165-8.

    Article  CAS  Google Scholar 

  • Heberer, T. (2002b). Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology Letters, 131, 5–17. doi:10.1016/S0378-4274(02)00041-3.

    Article  CAS  Google Scholar 

  • Hernández, F., Sancho, J. V., Ibáñez, M., & Guerrero, C. (2007). Antibiotic residue determination in environmental waters by LC-MS. Trends in Analytical Chemistry, 26, 466–485. doi:10.1016/j.trac.2007.01.012.

    Article  CAS  Google Scholar 

  • Hummel, D., Löffler, D., Fink, G., & Ternes, T. A. (2006). Simultaneous determination of psychoactive drugs and their metabolites in aqueous matrices by chromatography mass spectrometry. Environmental Science & Technology, 40, 7321–7328. doi:10.1021/es061740w.

    Article  CAS  Google Scholar 

  • Kasprzyk-Hordern, B., Dinsdale, R. M., & Guwy, A. J. (2008). The effect of signal suppression and mobile phase composition on the simultaneous analysis of multiple classes of acidic/neutral pharmaceuticals and personal care products in surface water by solid-phase extraction and ultra performance liquid chromatography–negative electrospray tandem mass spectrometry. Talanta, 74, 1299–1312. doi:10.1016/j.talanta.2007.08.037.

    Article  CAS  Google Scholar 

  • Kay, P., Blackwell, P. A., & Boxall, A. B. A. (2004). Fate of veterinary antibiotics in a macroporous tile drained clay soil. Environmental Toxicology and Chemistry, 23, 1136–1144. doi:10.1897/03-374.

    Article  CAS  Google Scholar 

  • Kidd, K. A., Blanchfield, P. J., Mills, K. H., Palace, V. P., Evans, R. E., Lazorchak, J. M., et al. (2007). Collapse of a fish population after exposure to a synthetic estrogen. Proceedings of the National Academy of Sciences of the United States of America, 104, 8897–8901. doi:10.1073/pnas.0609568104.

    Article  CAS  Google Scholar 

  • Kim, S.-C., & Carlson, K. (2007). Quantification of human and veterinary antibiotics in water and sediment using SPE/LC/MS/MS. Analytical and Bioanalytical Chemistry, 387, 1301–1315. doi:10.1007/s00216-006-0613-0.

    Article  CAS  Google Scholar 

  • Kolodziej, E. P., Harter, T., & Sedlak, D. L. (2004). Dairy wastewater, aquaculture, and spawning fish as sources of steroid hormones in the aquatic environment. Environmental Science & Technology, 38, 6377–6384. doi:10.1021/es049585d.

    Article  CAS  Google Scholar 

  • Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., et al. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environmental Science & Technology, 36, 1202–1211. doi:10.1021/es011055j.

    Article  CAS  Google Scholar 

  • Krein, A., & DeSutter, R. (2001). Use of artificial flood events to demonstrate the invalidity of simple mixing models. Hydrological Sciences Journal, 46, 611–622.

    Google Scholar 

  • Krein, A., & Schorer, M. (2000). Road runoff pollution and its contribution to river sediments. Water Research, 34, 4110–4115. doi:10.1016/S0043-1354(00)00156-1.

    Article  CAS  Google Scholar 

  • Krein, A., & Symader, W. (2000). Pollutant sources and transport patterns during natural and artificial flood events in the Olewiger Bach and Kartelbornsbach basins, Germany. In M. Stone (Ed.), Proceedings of the IAHS symposium on the role of erosion and sediment transport in nutrient and contaminant transfer (pp. 167–173). Wallingford: IAHS.

    Google Scholar 

  • Krein, A., Salvia-Castellvi, M., Iffly, J. F., Pfister, L., & Hoffmann, L. (2007). The importance of precedent hydro-climatological conditions for the mass transfer of pollutants in separated sewer systems and corresponding tributaries during flood events. Water, Air, and Soil Pollution, 182, 357–368. doi:10.1007/s11270-007-9347-7.

    Article  CAS  Google Scholar 

  • Kuch, H. M., & Ballschmiter, K. (2001). Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range. Environmental Science & Technology, 35(15), 3201–3206. doi:10.1021/es010034m.

    Article  CAS  Google Scholar 

  • Kurtenbach, A., & Krein, A. (2007). Pre-event hydrological conditions as determinants for sediment and pollutant transport during artificial and natural floods. In B. Westrich, & U. Förstner (Eds.), Sediment dynamics and pollutant mobility in rivers—an interdisciplinary approach (pp. 279–287). Heidelberg: Springer.

    Google Scholar 

  • Kurtenbach, A., Möller, S., Krein, A., & Symader, W. (2006). On the relationship between hydrographs and chemographs. Hydrological Processes, 20, 2921–2934. doi:10.1002/hyp.6169.

    Article  CAS  Google Scholar 

  • Laganà, A., Bacaloni, A., De Leva, I., Faberi, A., Fago, G., & Marino, A. (2004). Analytical methodologies for determining the occurrence of endocrine disrupting chemicals in sewage treatment plants and natural waters. Analytica Chimica Acta, 501, 79–88. doi:10.1016/j.aca.2003.09.020.

    Article  CAS  Google Scholar 

  • Larsen, T. A., Maurer, M., Udert, K. M., & Lienert, J. (2007). Nutrient cycles and resource management: implications for the choice of wastewater treatment technology. Water Science and Technology, 56, 229–237. doi:10.2166/wst.2007.576.

    Article  CAS  Google Scholar 

  • Lee, J. H., Bang, K. W., Ketchum, L. H., Choe, J. S., & Yu, M. J. (2002). First flush analysis of urban storm runoff. The Science of the Total Environment, 293, 163–175. doi:10.1016/S0048-9697(02)00006-2.

    Article  CAS  Google Scholar 

  • Li, D., Yang, M., Hu, J., Ren, L., Zhang, Y., & Li, K. (2008). Determination and fate of oxytetracycline production wastewater and the receiving river. Environmental Toxicology and Chemistry, 27, 80–86. doi:10.1897/07-080.1.

    Article  CAS  Google Scholar 

  • Pailler, Y., Guignard, C., Barnich, F., Iffly, J. F., Pfister, L., Hoffmann, L., et al. (2008). Investigating xenobiotics in Luxembourgish surface waters (French title: Etude de xénobiotiques dans les eaux de surface au Luxembourg). European Journal of Water Quality, 39, 127–144.

    CAS  Google Scholar 

  • Petrovic, M., Gonzalez, S., & Barceló, D. (2003). Analysis and removal of emerging contaminants in wastewater and drinking water. Trends in Analytical Chemistry, 22, 685–696. doi:10.1016/S0165-9936(03)01105-1.

    Article  CAS  Google Scholar 

  • Poor, C. J., & McDonnell, J. J. (2007). The effects of land use on stream nitrate dynamics. Journal of Hydrology (Amsterdam), 332, 54–68. doi:10.1016/j.jhydrol.2006.06.022.

    Article  Google Scholar 

  • Purdom, C. E., Hardiman, P. A., Bye, V. J., Eno, N. C., Tyler, C. R., & Sumpter, J. P. (1994). Estrogenic effects of effluents from sewage treatment works. Chemistry and Ecology, 8, 275–285. doi:10.1080/02757549408038554.

    Article  CAS  Google Scholar 

  • Quintana, J. B., & Reemtsma, T. (2004). Sensitive determination of acidic drugs and triclosan in surface and wastewater by ion-pair reverse-phase liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 18, 765–774. doi:10.1002/rcm.1403.

    Article  CAS  Google Scholar 

  • Renew, J. E., & Huang, C. H. (2004). Simultaneous determination of fluoroquinolone, sulfonamide, and trimethoprim antibiotics in wastewater using tandem solid phase extraction and liquid chromatography-electrospray mass spectrometry. Journal of Chromatography A, 1042, 113–121. doi:10.1016/j.chroma.2004.05.056.

    Article  CAS  Google Scholar 

  • Roberts, P. H., & Thomas, K. V. (2006). The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. The Science of the Total Environment, 356, 143–153. doi:10.1016/j.scitotenv.2005.04.031.

    Article  CAS  Google Scholar 

  • Rocher, V., Azimi, S., Gasperi, J., Beuvin, L., Muller, M., Moilleron, R., et al. (2004). Hydrocarbons and metals in atmospheric deposition and roof runoff in central Paris. Water, Air, and Soil Pollution, 159, 67–86. doi:10.1023/B:WATE.0000049165.12410.98.

    Article  CAS  Google Scholar 

  • Rodier, J. (1996). Water analyses: natural water, sewage water, sea water (French title: Analyse de l’eau: eau naturelle, eau résiduaire et eau de mer). Paris: Dunold.

    Google Scholar 

  • Routledge, E. J., Sheahan, D., Desbrow, C., Sumpter, J. P., & Waldock, M. (1998). Identification of estrogenic chemicals in STP effluent. 2. In vivo responses in trout and roach. Environmental Science & Technology, 32, 1559–1565. doi:10.1021/es970796a.

    Article  CAS  Google Scholar 

  • Schulman, L. J., Sargent, E. V., Naumann, B. D., Faria, E. C., Dolan, D. G., & Wargo, J. P. (2002). A human health risk assessment of pharmaceuticals in the aquatic environment. Human and Ecological Risk Assessment, 8, 657–680. doi:10.1080/10807030290879899.

    Article  CAS  Google Scholar 

  • Shareef, A., Angove, M. J., & Wells, J. D. (2006). Optimization of silylation using N-methyl-N-(trimethylsilyl)-trifluoroacetamide, N,O-bis-(trimethylsilyl)-trifluoroaceta-mide and N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide for the determination of the estrogens estrone and 17α-ethinylestradiol by gas chromatography-mass spectrometry. Journal of Chromatography. A, 1108, 121–128. doi:10.1016/j.chroma.2005.12.098.

    Article  CAS  Google Scholar 

  • Snyder, S. A., Westerhoff, P., Yoon, Y., & Sedlak, D. L. (2003). Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry. Environmental Engineering Science, 20, 449–469. doi:10.1089/109287503768335931.

    Article  CAS  Google Scholar 

  • Sower, S. A., Reed, K. L., & Babbitt, K. J. (2000). Limb malformation and abnormal sex hormone concentrations in frogs. Environmental Health Perspectives, 108, 1085–1090. doi:10.2307/3434963.

    Article  CAS  Google Scholar 

  • Steiner, M., Boller, M., Schulz, T., & Pronk, W. (2007). Modelling heavy metal fluxes from traffic into the environment. Journal of Environmental Monitoring, 9, 847–854. doi:10.1039/b703509h.

    Article  CAS  Google Scholar 

  • Stoob, K., Singer, H. P., Goetz, C. W., Ruff, M., & Mueller, S. R. (2005). Fully automated online solid phase extraction coupled directly to liquid chromatography-tandem mass spectrometry. Quantification of sulfonamide antibiotics, neutral and acidic pesticides at low concentrations in surface waters. Journal of Chromatography A, 1097, 138–147. doi:10.1016/j.chroma.2005.08.030.

    Article  CAS  Google Scholar 

  • Ternes, T. (2001a). Pharmaceuticals and metabolites as contaminants of the aquatic environment. In C. G. Daughton, & T. L. Jones-Lepp (Eds.), Pharmaceutical and personal care products in the environment: scientific and regulatory (pp. 39–54). Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Ternes, T. (2001b). Analytical methods for the determination of pharmaceuticals in aqueous environmental samples. Trends in Analytical Chemistry, 20, 419–434. doi:10.1016/S0165-9936(01)00078-4.

    Article  CAS  Google Scholar 

  • Titato, G., & Lancas, F. (2005). Comparison between different extraction (LLE and SPE) and determination (HPLC and Capillary-LC) techniques in the analysis of selected PAHs in water samples. Journal of Liquid Chromatography & Related Technologies, 28, 3045–3056. doi:10.1080/10826070500295120.

    Article  CAS  Google Scholar 

  • Williams, R. T. (2005). Human health pharmaceuticals in the environment: An Introduction. In R. T. Williams (Ed.), Science for assessing the impacts of human pharmaceuticals on aquatic ecosystems. Pensacola: Society of Environmental Toxicology and Chemistry.

    Google Scholar 

  • Wissiack, R., Rosenberg, E., & Grasserbauer, M. (2000). Comparison of different sorbent materials for on-line solid-phase extraction with liquid chromatography-atmospheric pressure chemical ionization mass spectrometry of phenols. Journal of Chromatography. A, 896, 159–170. doi:10.1016/S0021-9673(00)00730-5.

    Article  CAS  Google Scholar 

  • Yang, R., Thurston, V., Neumann, J., & Randall, D. J. (2000). A physiological model to predict xenobiotic concentration in fish. Aquatic Toxicology (Amsterdam, Netherlands), 48, 109–117. doi:10.1016/S0166-445X(99)00049-1.

    CAS  Google Scholar 

  • Yang, S., Cha, J., & Carlson, K. (2005). Simultaneous extraction and analysis of 11 tetracycline and sulfonamide antibiotics in influent and effluent domestic wastewater by solid-phase extraction and liquid chromatography-electrospray ionization tandem mass spectrometry. Journal of Chromatography. A, 1097, 40–53. doi:10.1016/j.chroma.2005.08.027.

    Article  CAS  Google Scholar 

  • Zuccato, E., Castiglioni, S., & Fanelli, R. (2005). Identification of the pharmaceuticals for human use contaminating the Italian aquatic environment. Journal of Hazardous Materials, 122, 205–209. doi:10.1016/j.jhazmat.2005.03.001.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the assistance of Emmanuelle Cocco and François Barnich with laboratory work. Sincere thanks are given to the “Administration des Services Techniques de l'Agriculture (ASTA)” (Agriculture Administration) for the provision of rainfall data. We also thank the ‘Ministère de la Culture, de l'Enseignement supérieur et de la Recherche’ of the Grand Duchy of Luxembourg for funding this pilot study. We thank the National Research Fund of the Grand Duchy of Luxembourg for funding a detailed ongoing study in the framework of the XENEAU project (CORE C08/SR/04). Many thanks to Matthew R. Graham from the British Environment Agency for the useful discussions in Brussels and the technical/editorial comments. The authors would like to thank the COST office for funding COST 636, Xenobiotics in the urban water cycle. We also thank all the participants of COST 636 for inspiring meetings full of ideas and knowledge exchange.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Krein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pailler, JY., Guignard, C., Meyer, B. et al. Behaviour and Fluxes of Dissolved Antibiotics, Analgesics and Hormones During Flood Events in a Small Heterogeneous Catchment in the Grand Duchy of Luxembourg. Water Air Soil Pollut 203, 79–98 (2009). https://doi.org/10.1007/s11270-009-9993-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-9993-z

Keywords

Navigation