Skip to main content
Log in

Lead (II) Removal from Aqueous Solution by Spent Agaricus bisporus: Determination of Optimum Process Condition Using Taguchi Method

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

In this paper, Taguchi method was applied to determine the optimum condition for Pb (II) removal from aqueous solution by spent Agaricus bisporus. An orthogonal array experiment design (L9(34) which is of four control factors (pH, t (contact time), m (sorbent mass), and C 0 (initial Pb (II) concentration)) having three levels was employed. Biosorption capacity (mg metal/g biosorbent) and percent removal (%) were investigated as the quality characteristics to be optimized. In order to determine the optimum levels of the control factors precisely, range analysis and analysis of variance were performed. The optimum condition for biosorption capacity was found to be pH = 5.00, t = 5.0 h, m = 0.010 g, and C 0 = 50 mg/L. And for percent removal, the optimum condition was found to be pH = 4.00, t = 4.0 h, m = 0.100 g, and C 0 = 50 mg/L. Under these optimum conditions, biosorption capacity and percent removal can reach 60.76 mg/g and 80.50%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Halim, S. H., Shehata, A. M. A., & El-Shahat, M. F. (2003). Removal of lead ions from industrial waste water by different types of natural materials. Water Research, 37, 1678–1683. doi:10.1016/S0043-1354(02)00554-7.

    Article  CAS  Google Scholar 

  • Akar, T., Tunali, S., & Kiran, I. (2005). Botrytis cinerea as a new fungal biosorbent for removal of Pb(II) from aqueous solutions. Biochemical Engineering Journal, 25, 227–235. doi:10.1016/j.bej.2005.05.006.

    Article  CAS  Google Scholar 

  • Akhtar, N., Saeedb, A., & Iqbal, M. (2003). Chlorella sorokiniana immobilized on the biomatrix of vegetable sponge of Luffa cylindrica: a new system to remove cadmium from contaminated aqueous medium. Bioresource Technology, 88, 163–165. doi:10.1016/S0960-8524(02)00289-4.

    Article  CAS  Google Scholar 

  • Akhtar, N., Iqbal, J., & Iqbal, M. (2004). Removal and recovery of nickel (II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies.. Journal of Hazardous Materials, B 108, 85–94.

    Article  Google Scholar 

  • Aksu, Z. (2001). Equilibrium and Kinetic modelling of cadmium (II) biosorption by C. Vulgaris in a batch system: effect of temperature. Separation and Purification Technology, 21, 285–294. doi:10.1016/S1383-5866(00)00212-4.

    Article  CAS  Google Scholar 

  • Al-Asheh, S., & Duvnjak, Z. (1995). Adsorption of copper and chromium by Aspergillus carbonarius. Biotechnology Progress, 11, 638–642. doi:10.1021/bp00036a006.

    Article  CAS  Google Scholar 

  • Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, 97, 219–243. doi:10.1016/S0304-3894(02)00263-7.

    Article  CAS  Google Scholar 

  • Brasila, J. L., Eva, R. R., Milchareka, C. D., Martinsa, L. C., Pavana, F. A., dos Santos Jr, A. A., Diasa, S. L. P., Duponta, J., Zapata Noreñab, C. P., & Lima, E. C. (2006). Statistical design of experiments as a tool for optimizing the batch conditions to Cr(VI) biosorption on Araucaria angustifolia wastes. Journal of Hazardous Materials, 133, 143–153. doi:10.1016/j.jhazmat.2005.10.002.

    Article  Google Scholar 

  • Cabuk, A., Akar, T., Tunali, S., & Tabak, Ö. (2006). Biosorption characteristics of Bacillus sp. ATS-2 immobilized in silica gel for removal of Pb (II). Journal of Hazardous Materials, 136, 317–323. doi:10.1016/j.jhazmat.2005.12.019.

    Article  CAS  Google Scholar 

  • Chen, G., Zeng, G., Tang, L., Dua, C., Jiang, X., Huang, G., Liu, H., & Shen, G. (2008). Cadmium removal from simulated wastewater to biomass byproduct of Lentinus edodes. Bioresource Technology, 99, 7034–7040. doi:10.1016/j.biortech.2008.01.020.

    Article  CAS  Google Scholar 

  • Chin-pin, H., Chin-pao, H., & Morehart, A. L. (1990). The removal of Cu (II) from dilute aqueous solution by Saccharomyces cerevisiae. Water Research, 24, 433–439. doi:10.1016/0043-1354(90)90225-U.

    Article  Google Scholar 

  • Chubara, N., Carvalhob, J. R., & Joana Neiva Correia, M. (2004). Cork biomass as biosorbent for Cu (II), Zn (II) and Ni (II). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 230, 57–65. doi:10.1016/j.colsurfa.2003.09.014.

    Article  Google Scholar 

  • Chakravarty, S., Dureja, V., Bhattacharyya, G., Maity, S., & Bhattacharjee, S. (2002). Removal of arsenic from groundwater using low cost ferruginous manganese ore. Water Research, 36, 625–632. doi:10.1016/S0043-1354(01)00234-2.

    Article  CAS  Google Scholar 

  • Clarkson, T. W., Friberg, L., Nordberg, G. F., & Sager, P. R. (1998). Biological Monitoring of Toxic Metals. New York: Kluwer.

    Google Scholar 

  • dos Santos, W. L., dos Santos, C. M. M., Costa, J. L. O., Andrade, H. M. C., & Ferreira, S. L. C. (2004). Multivariate optimization and validation studies in on-line pre-concentration system for lead determination in drinking water and saline waste from oil refinery. Microchemical Journal, 77, 123–129. doi:10.1016/j.microc.2004.02.006.

    Article  CAS  Google Scholar 

  • Ertugay, N., & Bayhan, Y. K. (2007). Biosorption of Cr (VI) from aqueous solutions by biomass of Agaricus bisporus. Journal of Hazardous Materials, 154, 432–439. doi:10.1016/j.jhazmat.2007.10.070.

    Article  Google Scholar 

  • Gupta, V. K., & Rastogi, A. (2008a). Biosorption of lead (II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.-A comparative study. Colloids and Surfaces. B, Biointerfaces, 64, 170–178. doi:10.1016/j.colsurfb.2008.01.019.

    Article  CAS  Google Scholar 

  • Gupta, V. K., & Rastogi, A. (2008b). Biosorption of lead from aqueous solutions by green algae Spirogyra species: Kinetics and equilibrium studies. Journal of Hazardous Materials, 152, 407–414. doi:10.1016/j.jhazmat.2007.07.028.

    Article  CAS  Google Scholar 

  • Huang, C., Huang, C. P., & Morehart, A. L. (1990). The removal of Cu(II) from dilute aqueous solution by S. cerevisiae. Water Research, 24, 433–439.

    Article  CAS  Google Scholar 

  • Jacquesb, R. A., Limaa, E. C., Diasa, S. L. P., Mazzocatoc, A. C., & Pavan, F. A. (2007). Yellow passion-fruit shell as biosorbent to remove Cr(III) and Pb(II) from aqueous solution. Separation and Purification Technology, 53, 193–198. doi:10.1016/j.seppur.2007.01.018.

    Article  Google Scholar 

  • Jalali, R., Ghafourian, H., Asef, Y., Davarpanah, S. J., & Sepehr, S. (2002). Removal and recovery of lead using nonliving biomass of marine algae. Journal of Hazardous Materials, 92, 253–262. doi:10.1016/S0304-3894(02)00021-3.

    Article  CAS  Google Scholar 

  • Kaminari, N. M. S., Schultz, D. R., Ponte, M. J. J. S., Ponte, H. A., Marino, C. E. B., & Neto, A. C. (2007). Heavy metals recovery from industrial wastewater using Taguchi method. Chemical Engineering Journal, 126, 139–146. doi:10.1016/j.cej.2006.08.024.

    Article  CAS  Google Scholar 

  • Kansanen, P. H., & Venetvaara, J. (1991). Comparison of biological collectors of airborne heavy metals near ferrochrome and steelworks. Water, Air, and Soil Pollution, 60, 337–359. doi:10.1007/BF00282631.

    Article  CAS  Google Scholar 

  • Kumari, P., Sharma, P., Srivastava, S., & Srivastava, M. M. (2006). Biosorption studies on shelled Moringa oleifera Lamarck seed powder: removal and recovery of arsenic from aqueous system. International Journal of Mineral Processing, 78, 131–139. doi:10.1016/j.minpro.2005.10.001.

    Article  CAS  Google Scholar 

  • Lima, E. C., Betina, R., Vaghetti, J. C. P., Brasil, J. L., Simon, N. M., Dos Santos, A. A., Pavan, F. A., Dias, S. L. P., Benvenutti, E. V., & Da Silva, E. A. (2007). Adsorption of Cu (II) on Araucaria angustifolia wastes: Determination of the optimal conditions by statistic design of experiments. Journal of Hazardous Materials, 140, 211–220. doi:10.1016/j.jhazmat.2006.06.073.

    Article  CAS  Google Scholar 

  • Martínez, M., Miralles, N., Hidalgo, S., Fiol, N., Villaescusa, I., & Poch, J. (2006). Removal of lead (II) and cadmium (II) from aqueous solutions using grape stalk waste. Journal of Hazardous Materials. B, 133, 203–211.

    Google Scholar 

  • Melgar, M. J., Alonso, J., & García, M. A. (2007). Removal of toxic metals from aqueous solutions by fungal biomass of Agaricus macrosporus. The Science of the Total Environment, 385, 12–19. doi:10.1016/j.scitotenv.2007.07.011.

    Article  CAS  Google Scholar 

  • Montgomery, D. C. (2001). Design and Analysis of Experiments (5th ed.). New York: Wiley.

    Google Scholar 

  • Pagnanelli, F., Mainelli, S., Vegliò, F., & Toro, L. (2003). Heavy metal removal by olive pomace: biosorbent characterization and equilibrium modelling. Chemical Engineering Science, 58, 4709–4717. doi:10.1016/j.ces.2003.08.001.

    Article  CAS  Google Scholar 

  • Pavana, F. A., Mazzocatob, A. C., Jacquesa, R. A., & Diasb, S. L. P. (2008). Ponkan peel: A potential biosorbent for removal of Pb (II) ions from aqueous solution. Biochemical Engineering Journal, 40, 357–362. doi:10.1016/j.bej.2008.01.004.

    Article  Google Scholar 

  • Pip, E. (1991). Cadmium, copper, and lead in soils and garden produce near a metal smelter at Flin-Flon, Manitoba. Bulletin of Environmental Contamination and Toxicology, 46, 790–796. doi:10.1007/BF01689969.

    Article  CAS  Google Scholar 

  • Sarı, A., Tuzen, M. (2008). Kinetic and equilibrium studies of biosorption of Pb (II) and Cd(II) from aqueous solution by macrofungus (Amanita rubescens) biomass. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2008.09.002.

  • Saeed, A., & Iqbal, M. (2003). Bioremoval of cadmium from aqueous solution by black gram husk (Cicer arientinum). Water Research, 37, 3472–3480. doi:10.1016/S0043-1354(03)00175-1.

    Article  CAS  Google Scholar 

  • Saeed, A., Iqbal, M., & Akhtar, M. W. (2005a). Removal and recovery of lead (II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk). Journal of Hazardous Materials, 117, 65–73. doi:10.1016/j.jhazmat.2004.09.008.

    Article  CAS  Google Scholar 

  • Saeed, A., Akhter, M. W., & Iqbal, M. (2005b). Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Separation and Purification Technology, 45, 25–31. doi:10.1016/j.seppur.2005.02.004.

    Article  CAS  Google Scholar 

  • Sangi, M. R., Shahmoradi, A., Zolgharnein, J., Azimi, G. H., & Ghorbandoost, M. (2008). Removal and recovery of heavy metals from aqueous solution using Ulmus carpinifolia and Fraxinus excelsior tree leaves. Journal of Hazardous Materials, 155, 513–522. doi:10.1016/j.jhazmat.2007.11.110.

    Article  CAS  Google Scholar 

  • Sheng, P. X., Ting, Y.-P., Chen, J. P., & Hong, L. (2004). Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. Journal of Colloid and Interface Science, 275, 131–141. doi:10.1016/j.jcis.2004.01.036.

    Article  CAS  Google Scholar 

  • Uluozlu, O. D., Sari, A., Tuzen, M., & Soylak, M. (2008). Biosorption of Pb (II) and Cr (III) from aqueous solution by lichen (Parmelina tiliaceae) biomass. Bioresource Technology, 99, 2972–2980. doi:10.1016/j.biortech.2007.06.052.

    Article  CAS  Google Scholar 

  • Volesky, B. (2001). Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy, 59, 203–216. doi:10.1016/S0304-386X(00)00160-2.

    Article  CAS  Google Scholar 

  • Wilde, E. W., & Benemann, J. R. (1993). Bioremoval of heavy metals by the use of microalgae. Biotechnology Advances, 11, 781–812. doi:10.1016/0734-9750(93)90003-6.

    Article  CAS  Google Scholar 

  • Wong, K. K., Lee, C. K., Low, K. S., & Haron, M. J. (2003). Removal of Cu and Pb from electroplating wastewater using tartaric acid modified rice husk. Process Biochemistry, 39, 437–445. doi:10.1016/S0032-9592(03)00094-3.

    Article  CAS  Google Scholar 

  • Zolgharnein, J., Shahmoradi, A., & Sangi, M. R. (2008). Optimization of Pb (II) biosorption by Robinia tree leaves using statistical design of experiments. Talanta, 76, 528–532. doi:10.1016/j.talanta.2008.03.039.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge financial support from the National High Technology Research and Development Program of China (863 Program), Project No. 2006AA06Z361 and thank Professor Guanglei Cheng for his technical assistance. Besides Xiaoqiang Zhu, Shiyu Zhou and Shouting Chen had provided experiment help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, H., Cheng, G., Chen, L. et al. Lead (II) Removal from Aqueous Solution by Spent Agaricus bisporus: Determination of Optimum Process Condition Using Taguchi Method. Water Air Soil Pollut 203, 53–63 (2009). https://doi.org/10.1007/s11270-009-9991-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-9991-1

Keywords

Navigation