Skip to main content

Advertisement

Log in

Biosorption of Zn (II) onto the Surface of Non-living Biomasses: A Comparative Study of Adsorbent Particle Size and Removal Capacity of Three Different Biomasses

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Present research has delineated the biosorption potential of three different nonliving biomasses namely eucalyptus bark saw dust, mango bark saw dust, and pineapple fruit peel with respect to Zn (II) ion removal from liquid phase through batch experiments. The efficacy of Zn (II) ion biosorption onto surface of biosorbents was judged and correlated with biosorbent particle size, surface chemistry, and surface texture. Maximum metal ion uptake capacity, percentage removal, and minimum equilibrium concentration as 1.688 mg/g, 84.4%, and 1.56 mg/l, respectively, was obtained using eucalyptus bark saw dust mediated biosorption followed by mango bark saw dust as 1.028 mg/g, 51.4%, and 4.867 mg/l and pineapple fruit peel as 0.45 mg/g, 22.9%, and 7.71 mg/l, respectively, at a particle size of 0.5 mm. Additionally, present investigation also proved that biosorption efficiency and metal ion interaction with adsorbent surface also depends upon presence of functional groups involved in metal ion adsorption and surface porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agouborde, L., & Navia, R. (2009). Heavy metals retention capacity of a non conventional sorbent developed from a mixture of industrial and agricultural waste. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2009.10.027.

    Google Scholar 

  • Akar, S. T., Yetimoglu, Y., & Gedikbey, T. (2009). Removal of chromium (VI) ions from aqueous solutions by using Turkish montmorilloinite clay: effect of activation and modification. Desalination, 244, 97–108.

    Article  CAS  Google Scholar 

  • Arshad, M., Zafar, N. M., Younis, S., & Nadeem, R. (2008). The use Neem biomass for the biosorption of zinc from aqueous solution. Journal of Hazardous Materials, 157, 534–540.

    Article  CAS  Google Scholar 

  • Arslanoglu, H., Altundogan, S. H., & Tumen, F. (2008). Heavy metal binding properties of esterified lemon. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2008.09.054.

    Google Scholar 

  • Bansal, C. R., & Goyal, M. (2005). Activated carbon adsorption. Boca Raton: CRC.

    Google Scholar 

  • Basha, S., Murthy, Z. P. V., & Jha, B. (2009). Sorption of Hg (II) onto Carica Papaya: Experimental studies and designs of batch sorber. Chemical Engineering Journal, 147, 226–234.

    Article  CAS  Google Scholar 

  • Chand, R., Narimura, K., Kawakita, H., Ohto, K., Watari, T., & Inoue, K. (2009). Grape waste as a biosorbent for removing Cr (VI) from aqueous solution. Journal of Hazardous Materials, 163, 243–250.

    Article  CAS  Google Scholar 

  • Chubar, N., Carvalho, J. R., & Correia, M. J. N. (2004). Heavy metals biosorption on cork biomass: Effect of the pretreatment. Colloids and Surface A: Physiochemical Engineers Aspects, 238, 51–58.

    Article  CAS  Google Scholar 

  • Cimino, G., Passerini, A., & Toscano, G. (2000). Removal of toxic cations and Cr (VI) from aqueous solution by hazelnut. Water Research, 34, 2955–2962.

    Article  CAS  Google Scholar 

  • Dang, H. B. V., Doan, D. H., Dang–Vu, T., & Lohi, A. (2009). Equilibrium and kinetics of biosorption of cadmium (II) and copper (II) ions by wheat straw. Bioresource Technology, 100, 211–219.

    Article  CAS  Google Scholar 

  • Das, K. S., & Guha, A. K. (2009). Biosorption of hexavalent chromium by Termitomyces clypeatus biomass: Kinetics and transmission electron microscopic study. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2009.01.037.

    Google Scholar 

  • Demirbas, E., Dizge, N., Sulak, M. T., & Kobya, M. (2008). Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon. Chemical Engineering Journal. doi:10.1016/j.cej.2008.09.027.

    Google Scholar 

  • Fan, T., Liu, Y., Feng, B., Zeng, G., Yang, C., Zhou, M., et al. (2008). Biosorption of cadmium (II), zinc (II) and lead (II) by Penicillium simplicissimum: Isotherms, kinetics and thermodynamics. Journal of Hazardous Materials, 160, 655–661.

    Article  CAS  Google Scholar 

  • Febrianto, J., Kosasih, N. A., Sunarso, J., Ju, H. Y., Indraswati, N., & Ismadji, S. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. Journal of Hazardous Materials, 162, 616–645.

    Article  CAS  Google Scholar 

  • Gupta, V. K., & Rastogi, A. (2009). Biosorption of hexavalent chromium by raw and acid treated green alga Oedogonium hatei from aqueous solutions. Journal of Hazardous Materials, 163, 396–402.

    Article  CAS  Google Scholar 

  • Kaczala, F., Marques, M., & Hogland, W. (2009). Lead and vanadium removal from real industrial waste water by gravitational setteling /sedimentation on to Pinus slyvestris saw dust. Bioresource Technology, 100, 235–243.

    Article  CAS  Google Scholar 

  • Khambhaty, Y., Mody, K., Basha, S., & Jha, B. (2009). Kinetic, equilibrium and thermodynamic studies on biosorption of hexavalent chromium by dead fungal biomass of marine Aspergillus niger. Chemical Engineering Journal, 145, 489–495.

    Article  CAS  Google Scholar 

  • Khatter, J. I. S., & Shailza. (2009). Optimization of Cd2+ removal by the cyano bacterium Synechocystis pevalekii using the response surface methodology. Process Biochemistry, 44, 118–121.

    Article  CAS  Google Scholar 

  • King, P., Rakesh, N., Lahari, B. S., Kumar, P. Y., & Prasad, V. S. R. K. (2008). Biosorption of zinc onto Syzygicum cumini L.: Equilibrium and kinetic studies. Chemical Engineering Journal, 144, 181–187.

    Article  CAS  Google Scholar 

  • Klein, C. J. (2000). Zinc supplementation. Journal of American Diet Association, 100, 1137–1138.

    Article  CAS  Google Scholar 

  • Lesmana, O. S., Febriana, N., Soetaredjo, E. F., Jaka, S., & Ismadji, S. (2009). Studies on potential application of biomass for the separation of heavy metals from water and waste water. Biochemical Engineering Journal, 44, 19–41.

    Article  CAS  Google Scholar 

  • Liu, Z., & Zhang, F. S. (2009). Removal of lead from waste water using biochars prepared from hydrothermal liquefactions of biomass. Journal of Hazardous Materials. doi:1016/j.jhazmat.2009.01.085.

    Google Scholar 

  • Lodi, A., Solisio, C., Converti, A., & Borghi, D. M. (1998). Cadmium, zinc, copper, silver, chromium (III) removal from wastewaters by Sphaerotilus natans. Bioprocess Engineering, 19, 197–203.

    CAS  Google Scholar 

  • Marin, P. B. A., Orunto, J. F., Aguilar, M. I., Mesguer, V. F., Saez, J., & Liorens, M. (2009). Use of chemical modification to determine the binding of Cd (II), Zn (II) and Cr (III) ions by orange waste. Biochemical Engineering Journal. doi:10.1016/j.bej.2008.12.010.

    Google Scholar 

  • Mohan, D., & Singh, P. K. (2002). Single and multi component adsorption of cadmium and zinc using activated carbon derived from bagasse—An agriculture waste. Water Research, 36, 2304–2318.

    Article  CAS  Google Scholar 

  • Nadeem, R., Ansari, T. M., Akhtar, K., & Khalid, A. M. (2009). Pb (II) sorption by pyrolysed Pongamia pinnata pods carbon (PPPC). Chemical Engineering Journal, 152, 54–63.

    Article  CAS  Google Scholar 

  • Nagh, W. S. W., & Hanafih, M. A. K. M. (2008). Removal of heavy metal ions from plant waste by chemically modified plant wastes as adsorbents: A review. Bioresource Technology, 99, 3935–3948.

    Article  CAS  Google Scholar 

  • Naiya, K. T., Choudhray, P., Bhattacharaya, K. A., & Das, K. S. (2009). Sawdust and neembark as low cost natural biosorbent for adsorptive removal of Zn (II) and Cd (II) ions from aqueous solutions. Chemical Engineering Journal, 148, 68–79.

    Article  CAS  Google Scholar 

  • Norton, L., Baskaran, K., & McKenzie, T. (2004). Biosorption of zinc from aqueous solutions using biosolids. Advances in Environmental Research, 8, 629–635.

    Article  CAS  Google Scholar 

  • Nuhoglu, Y., & Malkoc, E. (2009). Thermodynamic and kinetic studies for environmentally friendly Ni (II) biosorption using waste pomace of olive oil factory. Bioresource Technology, 100, 2375–2380.

    Article  CAS  Google Scholar 

  • Ozcan, S. A., Tunali, S., Akar, T., & Ozacan, A. (2009). Biosorption of lead (II) ions onto waste biomass of Phaseouls vulgaris L.: Estimation of the equilibrium, kinetic and thermodynamic parameters. Desalination, 244, 188–198.

    Article  CAS  Google Scholar 

  • Ozdemir, S., Kilinc, E., Poli, A., Nicolus, B., & Guen, K. (2008). Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophillic bacteria, Geobacillus toebii sub.sp. decanicus and Geobacillus thermoleovorans sbu.sp. strombolensis: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal. doi:10.10.1016/jcej.2009.04.041.

  • Ozdes, D., Gundogdu, A., Kemer, B., Celal, D., Hasan, B. S., & Soylak, M. (2009). Removal of Pb (II) ions from aqueous solution by waste mud from copper mine industry: Equilibrium, kinetic and thermodynamic study. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2008.12.073.

    Google Scholar 

  • Park, Y. J., Ko, J. J., Yun, S. L., Lee, E. Y., Kim, S. J., Kang-Lee, B. C., et al. (2008). Enhancement of bioremediation by Ralstonia sp. HM -1 in sediment polluted by Cd and Zn. Bioresource Technology, 99, 7458–7463.

    Article  CAS  Google Scholar 

  • Riaz, M., Nadeem, R., Hanif, A. M., Ansari, T. M., & Rehman, U. K. (2009). Pb (II) biosorption from hazardous aqueous streams using Gossypium hirusutum (cotton) waste biomass. Journal of Hazardous Materials, 161, 88–94.

    Article  CAS  Google Scholar 

  • Rocha, C. G., Zaia, D. A. M., Alfaya, R. V. S., & Alfaya, A. A. S. (2009). Use of rice straw as biosorbent for removal of Cu (II), Zn (II), Cd (II) and hg (II) ions in industrial effluents. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2008.11.074.

    Google Scholar 

  • Roney, N., Smith, V., Cassandra, Williams, M., Osier, M., Paikoff, S. J. (2005). Toxicological profile of zinc. Agency for Toxicology and Disease Registry.

  • Ruthven, M. D. (1984). Principles of adsorption and adsorption processes. New York: Wiley.

    Google Scholar 

  • Sari, A., & Tuzen, M. (2009). Kinetic and equilibrium studies of biosorption of Pb (II) and Cd (II) from aqueous solution by macrofungus (Amanita rubescens) biomass. Journal of Hazardous Materials, 164, 1004–1011.

    Article  CAS  Google Scholar 

  • Sengil, A. I., & Ozacar, M. (2009). Competitive biosorption of Pb2+, Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2008.12.071.

    Google Scholar 

  • Shek, H. T., Ma, A., Lee, V. K. C., & McKay, G. (2009). Kinetics of zinc ions removal from effluents using ion exchange resin. Chemical Engineering Journal, 146, 63–70.

    Article  CAS  Google Scholar 

  • Shen, W., Chen, S., Shi, S., Li, X., Zhang, X., Hu, W., et al. (2009). Adsorption of Cu (II) and Pb (II) onto diethylenetriamine-bacterial cellulose. Carbohydrate Polymers, 75, 110–114.

    Article  CAS  Google Scholar 

  • Shesha, R. R. (2007). Sorption behavior of Zn (II) ions on synthesized hydroxyapatites. Journal of Colloid and Interface Science, 310, 18–26.

    Article  CAS  Google Scholar 

  • Simon, H. B., Wbbertaman, A., Wanger, D., Tomaska, L., Malcolm, H. (2001). Environmental health criteria, Zinc, World Health Organization, Geneva.

  • Suksabye, P., Nakajima, A., Paitip, T., Baba, Y., & Nakbanpote, W. (2009). Mechanism of Cr (VI) adsorption by coir pith studied by ESR and adsorption kinetic. Journal of Hazardous Materials, 161, 1103–1108.

    Article  CAS  Google Scholar 

  • Tofan, L., Paduraru, C., Bilba, D., & Rotariu, M. (2008). Thermal power plants ash as sorbent removal of Cu (II) and Zn (II) ions from waste waters. Journal of Hazardous Materials, 156, 1–8.

    Article  CAS  Google Scholar 

  • Treybal, E. R. (1981) Adsorption and ion exchange. In: J. J. Carberry, J. R. Flair, M. S. Peters, W. R. Schowalter, J. Wei (Eds.), Mass transfer operations (pp. 568–569). New York: Mc-Graw Hill Company.

    Google Scholar 

  • Velasquez, L., & Dussan, J. (2009). Biosorption and bioacumulationof heavy metals on dead and living biomass of Bacillus spharicus. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2009.01.044.

    Google Scholar 

  • Yao, L., Ye, Z. F., Tong, M. P., Lai, P., & Ni, J. R. (2008). Removal of Cr 3+ from aqueous solution by biosorption with aerobic granules. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2008.09.110.

    Google Scholar 

  • Zakaria, A. Z., Suratman, M., Mohammed, N., & Ahmad, A. W. (2009). Chromium (VI) removal from aqueous solution by untreated rubber sawdust. Desalination, 244, 109–121.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors deeply acknowledge the Ministry of Human Resource and Development, Government of India (MHRD, New Delhi) for funding this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, V., Balomajumder, C. & Agarwal, V.K. Biosorption of Zn (II) onto the Surface of Non-living Biomasses: A Comparative Study of Adsorbent Particle Size and Removal Capacity of Three Different Biomasses. Water Air Soil Pollut 211, 489–500 (2010). https://doi.org/10.1007/s11270-009-0317-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0317-0

Keywords

Navigation