Skip to main content
Log in

Assessment of Bacterial and Fungal Aerosol in Different Residential Settings

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The concentration and size distribution of bacterial and fungal aerosol was studied in 15 houses. The houses were categorized into three types, based on occupant density and number of rooms: single room in shared accommodation (type I), single bedroom flat in three storey buildings (type II) and two or three bedroomed houses (type III). Sampling was undertaken with an Anderson six-stage impactor during the summer of 2007 in the living rooms of all the residential settings. The maximum mean geometric concentration of bacterial (5,036 CFU/m3, ± 2.5, n = 5) and fungal (2,124 CFU/m3, ± 1.38, n = 5) aerosol were in housing type III. The minimum levels of indoor culturable bacteria (1,557 CFU/m3, ±1.5, n = 5) and fungal (925 CFU/m3, ±2.9, n = 5) spores were observed in housing type I. The differences in terms of total bacterial and fungal concentration were less obvious between housing types I and II as compared to type III. With reference to size distribution, the dominant stages for culturable bacteria in housing types I, II and III were stage 3 (3.3–4.7 μm), stage 1 (7 μm and above) and stage 5 (1.1–2.1 μm), respectively. Whereas the maximum numbers of culturable fungal spores were recovered from stage 2 (4.7–7 µm), in housing type I, and from stage 4 (2.1–3.3 μm) in both type II and III houses. The average geometric mean diameter of bacterial aerosol was largest in type I (4.7 μm), followed by type II (3.89 μm) and III (1.96 μm). Similarly, for fungal spores, type I houses had the highest average mean geometric diameter (4.5 μm), while in types II and III the mean geometric diameter was 3.57 and 3.92 μm, respectively. The results indicate a wide variation in total concentration and size of bioaerosols among different residential settings. The observed differences in the size distributions and concentrations reflect their variable airborne behaviour and, as a result, different risks of respiratory exposure of the occupants to bioaerosols in various residential settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • ACGIH. (1989). Guidelines for the assessment of bioaerosols in the indoor environment. Cincinnati: American Conference of Governmental Industrial Hygienists.

    Google Scholar 

  • ACGIH. (1999). Bioaerosols: Assessment and control. Cincinnati: American Conference of Governmental Industrial Hygienists.

    Google Scholar 

  • Awad, A. H. A. (2007). Airborne dust, bacteria, actinomycetes and fungi at a flourmill. Aerobiologia, 23, 59–69.

    Article  Google Scholar 

  • Aydogdu, H., Asan, A., Otkun, M. T., & Ture, M. (2005). Monitoring of fungi and bacteria in the indoor air of primary schools in Edirne city, Turkey. Indoor and Built Environment, 14, 411–425.

    Article  CAS  Google Scholar 

  • Buttner, M. P., & Stetzenbach, L. D. (1993). Monitoring airborne fungal fpores in an experimental indoor environment to evaluate sampling methods and the effects of human activity on air sampling. Applied and Environmental Microbiology, 59, 219–226.

    CAS  Google Scholar 

  • DeKoster, J. A., & Thorne, P. S. (1995). Bioaerosol concentrations in noncomplaint, complaint, and intervention homes in the Midwest. American Industrial Hygiene Association Journal, 56, 573–580.

    Google Scholar 

  • Desai, M. R., & Ghosh, S. K. (2003). Occupational exposure to airborne fungi among rice mill workers with special reference to aflatoxin producing A-flavus strains. Annals of Agricultural and Environmental Medicine, 10, 159–162.

    Google Scholar 

  • Douwes, J., Thorne, P., Pearce, N., & Heederik, D. (2003). Bioaerosol health effects and exposure assessment: progress and prospects. Annals of Occupational Hygiene, 47, 187–200.

    Article  CAS  Google Scholar 

  • Dowd, S. E., & Maier, R. M. (2000). Aeromicrobiology. In R. M. Maier, I. L. Pepper, & C. P. Gerba (Eds.), Environmetal microbiology (pp. 91–122). San Diego: Academic.

    Google Scholar 

  • Ellis, J. J. (1981). The effect of medium temperature and age on Rhizopus delemar sporangiospore size. Mycologia, 73, 362–368.

    Article  Google Scholar 

  • Environment Canada (1989). Exposure guidelines for residential indoor air quality (p. 23). Ottawa: Federal-Provincial Advisory Committee on Environmental and Occupational Health.

    Google Scholar 

  • Foarde, K., Dulaney, P., Cole, E., VanOsdel, D., Ensor, D., Chang, J. (1993) Assessment of fungal growth on ceiling tiles under environmentally characterized conditions. In P. Kalliokoski, M. Jantunen, O. Seppänen (Eds.) Proceedings of Indoor Air 4:357–362

  • Gorny, R. L., Dutkiewicz, J., & Krysiska-Traczyk, E. (1999). Size distribution of bacterial and fungal bioaerosols in indoor air. Annals of Agricultural and Environmental Medicine, 6, 105–113.

    CAS  Google Scholar 

  • Green, C. F., Scarpino, P. V., & Gibbs, G. (2003). Assessemnt and modeling of indoor fungal and bacterial bioaerosol concentration. Aerobiologia, 19, 159–169.

    Article  Google Scholar 

  • Haas, D., Habib, J., Galler, H., Buzina, W., Schlacher, R., Marth, E., et al. (2007). Assessment of indoor air in Austrian apartments with and without visible mold growth. Atmospheric Environment, 41, 5192–5201.

    Article  CAS  Google Scholar 

  • Hameed, A. A. A., Shakour, A. A., & Yasser, H. I. (2003). Evaluation of bio-aerosols at an animal feed manufacturing industry: a case study. Aerobiologia, 19, 1573–3025.

    Google Scholar 

  • Hunter, C. A., Grant, C., Flannigan, B., & Bravery, A. F. (1988). Mould in buildings: the air spora of domestic dwellings. International Biodeterioration and Biodegradation, 24, 81–101.

    Google Scholar 

  • Hunter, C. A., Hull, A. V., Higham, D. F., Grimes, C. P., & Lea, R. G. (1996). Fungi and bacteria. In R. W. Berry, V. M. Brown, S. K. D. Coward, D. R. Crump, M. Gavin, C. P. Grimes, D. F. Higham, A. V. Hull, C. A. Hunter, I. G. Jeffery, R. G. Lea, J. W. Llewellyn, & G. J. Raw (Eds.), Indoor air quality in homes: part 1 (pp. 97–115). Gartson: Building Research Establishment.

    Google Scholar 

  • Hyvarinen, A., Vahteristo, M., Meklin, T., Jantunen, M., Nevalainen, A., & Moschandreas, D. (2001). Temporal and spatial variation of fungal concentrations in indoor air. Aerosol Science and Technology, 35, 688–695.

    Article  CAS  Google Scholar 

  • Jain, A. K. (2000). Survey of bioaerosol in different indoor working environments in central India. Aerobiologia, 16, 221–225.

    Article  Google Scholar 

  • Jones, A. M., & Harrison, R. M. (2004). The effects of meteorological factors on atmospheric bioaerosol concentrations—A review. Science of the Total Environment, 326, 151–180.

    Article  CAS  Google Scholar 

  • Jothish, P. S., & Nayar, T. S. (2004). Airborne fungal spores in a sawmill environment in Palakkad District, Kerala, India. Aerobiologia, 20, 75–81.

    Article  Google Scholar 

  • Kim, K. Y., & Kim, C. N. (2007). Airborne microbiological characteristics in public buildings of Korea. Building and Environment, 42, 2188–2196.

    Article  Google Scholar 

  • Kulmala, M., Asmi, A., & Pirjola, L. (1999). Indoor air aerosol model: The effect of outdoor air, filtration and ventilation on indoor concentrations. Atmospheric Environment, 33, 2133–2144.

    Article  CAS  Google Scholar 

  • Lee, J. H., & Jo, W. K. (2006). Characteristics of indoor and outdoor bioaerosols at Korean high-rise apartment buildings. Environmental Research, 101, 11–17.

    Article  CAS  Google Scholar 

  • Li, C. S., & Kuo, T. M. (1993). Microbiological indoor air quality in subtropical areas. Environment International, 19, 233–239.

    Article  Google Scholar 

  • Liao, C. M., Luo, W. C., Chen, S. C., Chen, J. W., & Liang, H. M. (2004). Temporal/seasonal variations of size-dependent airborne fungi indoor/outdoor relationships for a wind-induced naturally ventilated airspace. Atmospheric Environment, 38, 4415–4419.

    Article  CAS  Google Scholar 

  • Lin, W. H., & Li, C. S. (1996). Size characteristics of fungus allergens in the subtropical climate. Aerosol Science and Technology, 25, 93–100.

    Article  CAS  Google Scholar 

  • Meklin, T., Reponen, T., Toivola, M., Koponen, V., Husman, T., Hyvarinen, A., et al. (2002). Size distributions of airborne microbes in moisture-damaged and reference school buildings of two construction types. Atmospheric Environment, 36, 6031–6039.

    Article  CAS  Google Scholar 

  • Mohr, A. J. (2001). Fate and transport of microorganisms in air. In C. J. Hurst, R. L. Crawford, G. R. Knudson, M. J. McInerney, & L. D. Stetzenbach (Eds.), Manual of environmental microbiology (2nd ed., pp. 827–838). Washington: ASM.

    Google Scholar 

  • Moschandreas, D. J., Pagilla, K. R., & Storino, L. V. (2003). Time and space uniformity of indoor bacteria concentrations in Chicago area residences. Aerosol Science and Technology, 37, 899–906.

    Article  CAS  Google Scholar 

  • Musk, A. W., Venables, K. M., Crook, B., Nunn, A. J., Hawkins, R., Crook, G. D. W., et al. (1989). Respiratory symptoms, lung-function, and sensitization to flour in a British bakery. British Journal of Industrial Medicine, 46, 636–642.

    CAS  Google Scholar 

  • Narayan, M. C. J., Ravichandran, V., & Sullia, S. B. (1982). Aeromycology of the atmosphere of Malleeswaram Market, Bangalore. Acta Botanica Indica, 10, 196–200.

    Google Scholar 

  • Oppliger, A., Rusca, S., Charriere, N., Duc, T. V., & Droz, P. O. (2005). Assessment of bioaerosols and inhalable dust exposure in Swiss sawmills. Annals of Occupational Hygiene, 49, 385–391.

    Article  CAS  Google Scholar 

  • Pasanen, A. L., Pasanen, P., Jantunen, M. J., & Kalliokoski, P. (1991). Significance of air humidity and air velocity for fungal spore release into the air. Atmospheric Environment Part A—General Topics, 25, 459–462.

    Article  Google Scholar 

  • Pasanen, A. L., Kasanen, J. P., Rautiala, S., Ikaheimo, M., Rantamaki, J., Kaariainen, H., et al. (2000). Fungal growth and survival in building materials under fluctuating moisture and temperature conditions. International Biodeterioration and Biodegradation, 46, 117–127.

    Article  Google Scholar 

  • Pastuszka, J. S., Paw, U. K. T., Lis, D. O., Wlazlo, A., & Ulfig, K. (2000). Bacterial and fungal aerosol in indoor environment in Upper Silesia, Poland. Atmospheric Environment, 34, 3833–3842.

    Article  CAS  Google Scholar 

  • Ren, P., Jankun, T. M., & Leaderer, B. P. (1999). Comparisons of seasonal fungal prevalence in indoor and outdoor air and in house dusts of dwellings in one Northeast American county. Journal of Exposure Analysis and Environmental Epidemiology, 9, 560–568.

    Article  CAS  Google Scholar 

  • Ren, P., Jankun, T. M., Belanger, K., Bracken, M. B., & Leaderer, B. P. (2001). The relation between fungal propagules in indoor air and home characteristics. Allergy, 56, 419–424.

    Article  CAS  Google Scholar 

  • Reponen, T., Hyvarinen, A., Ruuskanen, J., Raunemaa, T., & Nevalainen, A. (1994). Comparison of concentrations and size distributions of fungal spores in buildings with and without mold problems. Journal of Aerosol Science, 25, 1595–1603.

    Article  CAS  Google Scholar 

  • Reponen, T., Willeke, K., Ulevicius, V., Reponen, A., & Grinshpun, S. A. (1996). Effect of relative humidity on the aerodynamic diameter and respiratory deposition of fungal spores. Atmospheric Environment, 30, 3967–3974.

    Article  CAS  Google Scholar 

  • Ritschkoff AC, Viitanen H, Koskela K (2000) The response of building materials to the mould exposure at different humidity and temperature conditions. Proceedings of Healthy Buildings, Espoo, August 6–10, 1, pp 317–322

  • Rolka, H., Krajewska-Kulak, E., Lukaszuk, C., Oksiejczuk, E., Jakoniuk, P., Leszczynska, K., et al. (2005). Indoor air studies of fungi contamination of social welfare home in Czerewki in north-east part of Poland. Roczniki Akademii Medycznej w Bialymstoku, 50(Suppl 1), 26–30.

    Google Scholar 

  • Rosas, I., Calderon, C., Salinas, E., Martınez, L., Alfaro-Moreno, E., Milton, D. K., et al. (2001). Animal and worker exposure to dust and biological particles in animal care houses. Aerobiologia, 17, 49–59.

    Article  Google Scholar 

  • Savino, E., & Caretta, G. (1992). Airborne fungi in an Italian rice mill. Aerobiologia, 8, 267–275.

    Article  Google Scholar 

  • Shelton, B. G., Kirkland, K. H., Flanders, W. D., & Morris, G. K. (2002). Profiles of airborne fungi in buildings and outdoor environments in the United States. Applied and Environmental Microbiology, 68, 1743–1753.

    Article  CAS  Google Scholar 

  • Singh, A., & Singh, A. B. (1994). Airborne fungi in a bakery and the prevalence of respiratory dysfunction among workers. Grana, 33, 349–358.

    Article  Google Scholar 

  • Strachan, D. P., Flannigan, B., McCabe, E. M., & McGarry, F. (1990). Quantification of airborne molds in the homes of children with and without wheeze. Thorax, 45, 382–387.

    Article  CAS  Google Scholar 

  • Tsai, F. C., & Macher, J. M. (2005). Concentrations of airborne culturable bacteria in 100 large US office buildings from the BASE study. Indoor Air, 15, 71–81.

    Article  Google Scholar 

  • Viitanen H, Hanhijärvi A, Hukka A, Koskela K (2000) Modelling mould growth and decay damages. Proceedings of Healthy Buildings, Espoo, August 6–10, 3:317–322

  • WHO (2007) Development of WHO guidelines for indoor air quality: dampness and mould, report on a working group meeting Bonn, Germany, 17–18 October

  • Zorman, T., & Jersek, B. (2008). Assessment of bioaerosol concentrations in different indoor environments. Indoor and Built Environment, 17, 155–163.

    Article  Google Scholar 

  • Zuraimi, M. S., & Tham, K. W. (2008). Indoor air quality and its determinants in tropical child care centers. Atmospheric Environment, 42, 2225–2239.

    Article  CAS  Google Scholar 

  • Zuraimi, M. S., Fang, L., Tan, T. K., Chew, F. T., & Tham, K. W. (2009). Airborne fungi in low and high allergic prevalence child care centers. Atmospheric Environment, 43, 2391–2400.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Colbeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasir, Z.A., Colbeck, I. Assessment of Bacterial and Fungal Aerosol in Different Residential Settings. Water Air Soil Pollut 211, 367–377 (2010). https://doi.org/10.1007/s11270-009-0306-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0306-3

Keywords

Navigation