Skip to main content

Advertisement

Log in

Tetracycline-Resistant Escherichia coli in a Small Stream Receiving Fish Hatchery Effluent

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

We examined the impact of the effluent discharged from a freshwater (trout and related species) fish hatchery on the presence of antibiotic-resistant microorganisms in a small stream. There had been no documented use of antibiotics in the hatchery for at least 6 months prior to our study, although a variety of biocides were employed routinely for cleaning. Heterotrophic bacteria and Escherichia coli were isolated from both water column and sediment samples at sites above and below the discharge of the hatchery effluent as well as from the hatchery effluent itself. Randomly chosen isolates (≥96 isolates per site) were tested for their resistance to ampicillin, cephalexin, erythromycin, and tetracycline. Resistance to at least one antibiotic was found in greater than 30% of both the heterotrophic isolates and the E. coli isolates from each of the sites. There were no significant differences among the sites in the proportion of the heterotrophic isolates resistant to any specific antibiotic. The proportion of E. coli isolates resistant to tetracycline in the hatchery effluent and in both the downstream water and sediment samples was significantly higher than in either the upstream water or sediment. These results support the possibility of the hatchery as a source of tetracycline-resistant microorganisms even in the absence of recent use of this antibiotic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alcaide, E., Blasco, M.-D., & Esteve, C. (2005). Occurrence of drug-resistant bacteria in two European eel farms. Applied and Environmental Microbiology, 71, 3348–3350.

    Article  CAS  Google Scholar 

  • Ash, R. J., Mauck, B., & Morgan, M. (2002). Antibiotic-resistance of gram-negative bacteria in rivers, United States. Emerging Infectious Diseases, 8, 713–716.

    Google Scholar 

  • Beier, R. C., Duke, S. E., Ziprin, R. L., Harvey, R. B., Hume, M. E., et al. (2008). Antibiotic and disinfectant susceptibility profiles of vancomycin-resistant Enterococcus faecium (VRE) isolated from community wastewater in Texas. Bulletin of Environmental Contamination and Toxicology, 80, 188–194.

    Article  CAS  Google Scholar 

  • Cabello, F. C. (2006). Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environmental Microbiology, 8, 1137–1144.

    Article  CAS  Google Scholar 

  • Camargo, I. L. B., & Gilmore, M. S. (2008). Guest commentary: Staphylococcus aureus—probing for host weakness? Journal of Bacteriology, 190, 2253–2256.

    Article  CAS  Google Scholar 

  • da Costa, P. M., Vaz-Pires, P., & Bernardo, F. (2008). Antimicrobial resistance in Escherichia coli isolated in wastewater and sludge from poultry slaughterhouse wastewater plants. Journal of Environmental Health, 70, 40–45.

    Google Scholar 

  • Davies, J. (1994). Inactivation of antibiotics and the dissemination of resistance genes. Science, 264(5157), 375–382.

    Article  CAS  Google Scholar 

  • Del Rio-Rodriquez, R. E., Inglis, V., & Miller, S. D. (1997). Survival of Escherichia coli in the intestine of fish. Aquaculture Research, 28, 257–264.

    Article  Google Scholar 

  • Edge, T. A., & Hill, S. (2007). Multiple lines of evidence to identify the sources of fecal pollution at a freshwater beach in Hamilton Harbour, Lake Ontario. Water Research, 41, 3585–3594.

    Article  CAS  Google Scholar 

  • Engemann, C. A., Adams, L., Knapp, C. W., & Graham, D. W. (2006). Disappearance of oxytetracycline-resistance genes in aquatic systems. FEMS Microbiology Letters, 263, 176–182.

    Article  CAS  Google Scholar 

  • Ferreira da Silva, M., Vaz-Moreira, I., Gonzalez-Pajuelo, M., Nunes, O. C., & Manaia, C. M. (2007). Antimicrobial resistance patterns in Enterobacteriaceae isolated from an urban wastewater treatment plant. FEMS Microbiology Ecology, 60, 166–176.

    Article  CAS  Google Scholar 

  • Fralich, J. A. (1996). Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli. Journal of Bacteriology, 178, 5803–5805.

    Google Scholar 

  • French, G. L., Ling, J., Chow, K. L., & Mark, K. K. (1987). Occurrence of multiple antibiotic-resistance and R-plasmids in gram-negative bacteria isolated from faecally contaminated fresh-water streams in Hong Kong. Epidemiology and Infection, 98, 285–299.

    Article  CAS  Google Scholar 

  • Garcia, S., Wade, B., Bauer, C., Craig, C., Nakaoka, K., & Lorowitz, W. (2007). The effect of wastewater treatment on antibiotic-resistance in Escherichia coli and Enterococcus sp. Water Environment Research, 79, 2387–2395.

    Article  CAS  Google Scholar 

  • Goldburg, R., & Naylor, R. (2005). Future seascapes, fishing, and fish farming. Frontiers in Ecology and the Environment, 3, 21–28.

    Article  Google Scholar 

  • Goñi-Urriza, M., Capdepuy, M., Arpin, C., Raymond, N., Caumette, P., & Quentin, C. (2000). Impact of an urban effluent on antibiotic-resistance of riverine Enterobacteriaceae and Aeromonas spp. Applied and Environmental Microbiology, 66, 125–132.

    Article  Google Scholar 

  • Gordon, L. E., Giraud, J. P., Ganière, F., Armand, A., Bouju-Albert, N., de la Cotte, C., et al. (2007). Antimicrobial resistance survey in a river receiving effluents from freshwater fish farms. Journal of Applied Microbiology, 102, 1167–1176.

    CAS  Google Scholar 

  • Hastings, P. J., Rosenberg, S. M., & Slack, A. (2004). Antibiotic-induced lateral transfer of antibiotic-resistance. Trends in Microbiology, 12, 401–404.

    Article  CAS  Google Scholar 

  • Heuer, H., Krögerrecklenfort, E., Wellington, E. M. H., Egan, S., van Elsas, J. D., et al. (2002). Gentamicin resistance genes in environmental bacteria: prevalence and transfer. FEMS Microbiology Ecology, 42, 289–302.

    Article  CAS  Google Scholar 

  • HRG (Herbert, Rowland and Grubic, Inc.). (2005). Yellow breeches creek rivers conservation plan: Cumberland, York and Adams Counties, Pennsylvania. Project Report No. 0243.180. Harrisburg.

  • Husevag, B., Lunestad, B. T., Johannessen, P. J., Enger, O., & Samuelsen, O. B. (1991). Simultaneous occurrence of Vibrio salmonicida and antibiotic-resistant bacteria in sediments at abandoned aquaculture sites. Journal of Fish Diseases, 14, 631–640.

    Article  Google Scholar 

  • Huys, G., Gevers, D., Temmerman, R., Cnockaert, M., Denys, R., Rhodes, G., et al. (2001). Comparison of the antimicrobial tolerance of oxytetracycline-resistant heterotrophic bacteria isolated from hospital sewage and freshwater fishfarm water in Belgium. Systematic and Applied Microbiology, 23, 599–606.

    Google Scholar 

  • Kelch, W. J., & Lee, J. S. (1978). Antibiotic-resistance patterns of gram-negative bacteria isolated from environmental sources. Applied and Environmental Microbiology, 36, 450–456.

    CAS  Google Scholar 

  • Kerry, J., Coyne, R., Gilroy, D., Hiney, M., & Smith, P. (1996). Spatial distribution of oxytetracycline and elevated frequencies of oxytetracycline-resistance in sediments beneath a marine salmon farm following oxytetracyclin therapy. Aquaculture, 145, 31–39.

    Article  CAS  Google Scholar 

  • Kerry, J., Coyne, R., Hiney, M., NicGabhainn, S., Gilroy, D., Cazabon, D., et al. (1995). Fish feed as a source of oxytetracycline-resistant bacteria in the sediments under fish farms. Aquaculture, 131, 101–113.

    Article  Google Scholar 

  • Kim, S., & Aga, D. S. (2007). Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants. Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 10, 559–573.

    Article  CAS  Google Scholar 

  • Kim, S. C., & Carlson, K. (2007). Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices. Environmental Science and Technology, 41, 50–57.

    Article  CAS  Google Scholar 

  • Levy, S. B. (2002). Active efflux, a common mechanism for biocide and antibiotic resistance. Society for Applied Microbiology Symposium Series, 31, 65S–75S.

    CAS  Google Scholar 

  • Levy, S. B. (2005). Antibiotic-resistance—the problem intensifies. Advanced Drug Delivery Reviews, 57, 1446–1450.

    Article  CAS  Google Scholar 

  • Levy, S. B., & Marshall, B. (2004). Antibacterial resistance worldwide: causes, challenges and responses. Nature Medicine, 10, S122–S129.

    Article  CAS  Google Scholar 

  • Li, X., Nikaido, H., & Poole, K. (1995). Role of mex-A-mex-B-oprM in antibiotic efflux in Pseeudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 39, 1948–1953.

    CAS  Google Scholar 

  • Miranda, C. D., Kehrenberg, C., Ulep, C., Schwarz, S., & Roberts, M. C. (2003). Diversity of tetracycline-resistance genes in bacteria from Chilean salmon farms. Antimicrobial Agents and Chemotherapy, 47, 883–888.

    Article  CAS  Google Scholar 

  • Mukherjee, S., & Chakraborty, R. (2007). Conjugation potential and class 1 integron carriage of resident plasmids in river water copiotrophs. Acta Microbiologica et Immunologica Hungarica, 54, 379–397.

    Article  CAS  Google Scholar 

  • Naylor, R., & Burke, M. (2005). Aquaculture and ocean resources: raising tigers of the sea. Annual Review of Environment and Resources, 30, 185–218.

    Article  Google Scholar 

  • Niemi, M., & Taipalinen, I. (1982). Faecal indicator bacteria of fish farms. Hydrobiologia, 86, 171–175.

    Article  Google Scholar 

  • Niemi, M., Sibakov, M., & Niemela, S. (1983). Antibiotic-resistance among different species of fecal coliforms isolated from water samples. Applied and Environmental Microbiology, 45, 79–83.

    CAS  Google Scholar 

  • Nikolakopoulou, T. L., Egan, S., van Overbeek, L. S., Guillaume, G., Heuer, H., et al. (2005). PCR detection of oxytetracycline resistance genes ort(A) and ort(B) in tetracycline-resistant streptomycete isolates from diverse habitats. Current Microbiology, 51, 211–216.

    Article  CAS  Google Scholar 

  • Nikolakopoulou, T. L., Giannoutsou, E. P., Karabatsou, A., & Karagouni, A. D. (2008). Prevalence of tetracycline resistance genes in Greek seawater habitats. Journal of Microbiological Methods, 46, 633–640.

    CAS  Google Scholar 

  • Petersen, A., Andersen, J. S., Kaewmak, T., Somsiri, T., & Dalsgaard, A. (2002). Impact of integrated fish farming on antimicrobial resistance in a pond environment. Applied and Environmental Microbiology, 68, 6036–6042.

    Article  CAS  Google Scholar 

  • Rhodes, G., Huys, G., Swings, J., McGann, P., Hiney, M., Smith, P., et al. (2000). Distribution of oxytetracycline-resistance plasmids between aeromonads in hospital and aquaculture environments: implication of Tn1721 in dissemination of the tetracycline-resistance determinant tet A. Applied and Environmental Microbiology, 66, 3883–3890.

    Article  CAS  Google Scholar 

  • Schmidt, C. W. (2002). Antibiotic-resistance in livestock: more at stake than steak. Environmental Health Perspectives, 110, A396–A402.

    Google Scholar 

  • Schmidt, A. S., Bruun, M. S., Dalsgaard, I., Pedersen, K., & Larsen, J. L. (2000). Occurrence of antimicrobial resistance in fish-pathogenic and environmental bacteria associated with four Danish rainbow trout farms. Applied and Environmental Microbiology, 66, 4908–4915.

    Article  CAS  Google Scholar 

  • Schmidt, A. S., Bruun, M. S., Dalsgaard, I., & Larsen, J. L. (2001). Incidence, distribution, and spread of tetracycline-resistance determinants and integron-associated antibiotic-resistance genes among motile aeromonads from a fish farming environment. Applied and Environmental Microbiology, 67, 5675–5682.

    Article  CAS  Google Scholar 

  • Sørum, H., & L'Abée-Lund, T. M. (2002). Antibiotic-resistance in food-related bacteria–a result of interfering with the global web of bacterial genetics. International Journal of Food Microbiology, 78, 43–56.

    Article  Google Scholar 

  • SRBC (Susquehanna River Basin Commission). (2007). Lower Susquehanna Subbasin: small watershed study: Yellow Breeches Creek: A bacteriological assessment, February–November 2006. Technical Report written by L. Y. Steffy, Aquatic Ecologist. srbc@srbc.net.

  • Weber, J. T., Mintz, E. D., Cañizares, R., Semiglia, A., Gomez, I., Sempértegui, R., et al. (1994). Epidemic cholera in Ecuador: multidrug-resistance and transmission by water and seafood. Epidemiology and Infection, 112, 1–11.

    Article  CAS  Google Scholar 

  • Wegener, H. C. (1999). The consequences for food safety of the use of fluoroquinolones in food animals. New England Journal of Medicine, 340, 1581–1582.

    Article  CAS  Google Scholar 

  • Zhang, X.-X., Zhang, T., & Fang, H. H. P. (2009). Antibiotic resistance genes in water environment. Applied Microbiology and Biotechnology, 82, 397–414.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the School of Science, Engineering, and Technology at PSH for its support. The authors would also like to thank Ed Spayd for his assistance in collecting samples used for this research, and Danielle Harrow and Robert Currer for their critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebekah E. Templin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stachowiak, M., Clark, S.E., Templin, R.E. et al. Tetracycline-Resistant Escherichia coli in a Small Stream Receiving Fish Hatchery Effluent. Water Air Soil Pollut 211, 251–259 (2010). https://doi.org/10.1007/s11270-009-0296-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0296-1

Keywords

Navigation