Skip to main content
Log in

Decolorization of Synthetic Dyes and Textile Effluents by Basidiomycetous Fungi

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Decolorization of six synthetic dyes and two raw textile effluents (A and B) by eight basidiomycetous fungi was investigated. Among eight basidiomycetous fungi, fungal isolate RCK-1 decolorized textile effluent A maximally (42%), while fungal isolate RCK-3 was found to decolorize more of Congo Red (69%), Xylidine Ponceau 2R (100%), Poly R-478 (96%), Indigo Carmine (99%), Lissamine Green B (90%), Toluidine Blue (57%) and textile effluent B (54%), than the rest of fungi. Percentage decolorization of all synthetic dyes and textile effluents by the new fungal isolates RCK-1 and RCK-3 was higher compared to the most widely studied simultaneous lignin degrader, Phanerochaete chrysosporium and selective lignin degrader, Pycnoporus cinnabarinus, when tested in liquid cultures. A statistically significant positive correlation between laccase production and decolorization of dyes and effluents was obtained as compared to other ligninolytic enzymes (lignin peroxidase and manganese peroxidase) production. This showed the importance of the differential contribution of the different ligninolytic enzymes towards the decolorization of the synthetic dyes and textile effluents. The substantially higher ligninolytic enzyme production by the fungal isolates RCK-1 and RCK-3 also suggested their potential use for textile effluent treatment and other possible biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alaton, I. A., Balcioglu, I. A., & Bahnemann, D. W. (2002). Advance oxidation of a reactive dyebath effluent: comparison of O3, H2O2/UV-C and TiO2/UV-A processes. Water Resour, 36, 1143–1154.

    Article  CAS  Google Scholar 

  • Alhassani, H. A., Rauf, M. A., & Ashraf, S. S. (2007). Efficient microbial degradation of Toluidine Blue dye by Brevibacillus sp. Dyes Pigm, 75, 395–400.

    Article  CAS  Google Scholar 

  • Bhaskar, M., Gnanamani, A., Ganeshjeevan, R. J., Chandraseka, R., & Sadulla, S. (2003). Analysis of carcinogenic aromatic amines released from harmful azo colorants by Streptomyces SP SS07. J Chromatogr, 1018, 117–123.

    Article  CAS  Google Scholar 

  • Bhatt, N., Patel, K. C., Keharia, H., & Madamwar, D. (2005). Decolorization of diazo-dye Reactive Blue 172 by Pseudomonas aeruginosa NBAR12. J Basic Microbiol, 45(6), 407–418.

    Article  CAS  Google Scholar 

  • Campos, R., Kandelbauer, A., Robra, K. H., Cavaco-Paulo, A., & Guebitz, G. M. (2001). Indigo degradation with purified laccase from Trametes hirsuta and Sclerotium rolfsii. J Biotechnol, 89, 131–139.

    Article  CAS  Google Scholar 

  • Claus, H., Faber, G., & Konig, H. (2002). Redox-mediated decolorization of synthetic dyes by fungal laccases. Appl Microbiol Biotechnol, 59, 672–678.

    Article  CAS  Google Scholar 

  • Cripps, C., Bumpus, J. A., & Aust, S. D. (1990). Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl Environ Microbiol, 56, 1114–1118.

    CAS  Google Scholar 

  • Dhawan, S. & Kuhad, R. C. (2004). Ethidium bromide stimulated hyper laccase production from bird’s nest fungus Cyathus bulleri. Lett Appl Microbiol, 36, 11–13.

    Google Scholar 

  • Diaz, J., Bernal, A., Pomar, F., & Merino, F. (2001). Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annuum L.) seedlings in reponse to copper stress and its relation to lignification. Plant Sci, 161, 179–188.

    Article  CAS  Google Scholar 

  • D’Souza, D. T., Tiwari, R., Sah, A. K., & Raghukumar, C. (2006). Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzyme Microb Technol, 38, 504–511.

    Article  Google Scholar 

  • Eichlerová, I., Homolka, L., & Nerud, F. (2006). Syntheic dye decolorization capacity of white rot fungus Dichomitus squalens. Bioprocess Technol, 97, 2153–2159.

    Google Scholar 

  • El-Rahim, Abd W. M., Moawad, H., & Khalafallah M. (2003). Microflora involved in textile dye waste removal. J Basic Micobiol, 43(3), 167–174.

  • Fu, Y., & Viraraghavan, T. (2001). Fungal decolorization of dye wastewater: a review. Bioersource Technol, 79, 251–262.

    Article  CAS  Google Scholar 

  • Gnanamani, A., Bhaskar, M., Ganeshjeevan, R., Chandrasekar, R., Sekaran, G., Sadulla, S., et al. (2005). Enzymatic and chemical catalysis of Xylidine Ponceau 2R and evaluation of products released. Process Biochem, 40, 3497–3504.

    Article  CAS  Google Scholar 

  • Gogate, P. R. & Pandit, A. B. (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res, 8, 501–551.

    Article  CAS  Google Scholar 

  • Heinfling, A., Martinez, A. T., Bergbauer, M., & Szewzyk, U. (1998). Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and in a manganese-independent reaction. Appl Environ Microbiol, 64(8), 2788–2793.

    CAS  Google Scholar 

  • Kidwai, M., Poddar, R., Diwaniyan, S., & Kuhad, R. C. (2009). Laccase from basidiomycetous fungus catalyzed synthesis of substituted 5-deaza-10-oxaflavin via Domino reaction. Adv Synth Catal, 351(4), 589–595.

    Article  CAS  Google Scholar 

  • Knapp, J. S. & Newby, P. S. (1999). The decolorization of a chemical industry effluent by white rot fungi. Water Resour, 33, 575–577.

    Article  CAS  Google Scholar 

  • Knapp, J. S., Newby, P. S., & Reece, L. P. (1995). Decolorization of dyes by wood-rotting basidiomycete fungi. Enzyme Microb Technol, 17, 664–668.

    Article  CAS  Google Scholar 

  • Kuhad, R. C., Sood, N., Tripathi, K. K., Singh, A., & Ward, O. P. (2004). Developments in microbial methods for the treatments of dye effluents. Adv Appl Microbiol, 56, 185–213.

    Article  CAS  Google Scholar 

  • Kuhar, S., Nair, L. M., & Kuhad, R. C. (2008). Pretreatment of lignocellulosic material with fungus capable of higher lignin and low carbohydrate degradation improves their acid hydrolysis and eventually their conversion to ethanol. Can J Microbiol, 54, 305–313.

    Article  CAS  Google Scholar 

  • López, M. J., Guisado, G., Vargas-García, M. C., Suárez-Estrella, F., & Moreno, J. (2006). Decolorization of industrial dyes by ligninolytic microorganisms isolated from composting environment. Enzyme Microb Technol, 40, 42–45.

    Article  Google Scholar 

  • Lu, Y., Phillips, D. R., Lu, L., & Hardin, I. R. (2008). Determination of the degradation products of selected sulfonated phenylazonaphthol dyes treated by white rot fungus Pleurotus ostreatus by capillary electrophoresis coupled with electrospray ionization ion trap mass spectrometry. J Chromatogr, 1208(1–2), 223–231.

    Article  CAS  Google Scholar 

  • Martínez, M. J., Ruiz-Dueñas, F. J., Guillen, F. A., & Martínez, A. T. (1996). Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. Eur J Biochem, 237, 424–432.

    Article  Google Scholar 

  • McMullan, G., Meehan, C., Conneely, A., Kirby, N., Robinson, T., Nigam, P., et al. (2001). Microbial decolourization and degradation of textile dyes. Appl Microbiol Biotechnol, 56, 81–87.

    Article  CAS  Google Scholar 

  • Mielgo, I., Moreira, M. T., Feijoo, G., & Lema, J. M. (2001). A packed bed fungal bioreactor for the continuous decolorization of azo dye (Orange II). J Biotechnol, 89, 99–106.

    Article  CAS  Google Scholar 

  • Murugesan, K., Nam, I. H., Kim, Y. M., & Yoon-Seok, C. (2007). Decolorization of reactive dyes by a thermostable laccase produced by Ganoderma lucidum in solid state culture. Enzyme Microb Technol, 40, 1662–1672.

    Article  CAS  Google Scholar 

  • O’Neill, C., Hawkes, F. R., Lourenco, N. D., Pinheiro, H. M., & Delee, W. (1999). Color in textile effluents-source, measurement, discharge contents and simulation: a review. J Chem Technol Biotechnol, 74, 1009–1018.

    Article  Google Scholar 

  • Pinheiro, H. M., Touraud, E., & Thomas, O. (2004). Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes Pigm, 61, 121–139.

    Article  CAS  Google Scholar 

  • Shahvali, M., Assadi, M. M., & Rostami, K. (2000). Effect of environmental parameters on decolorization of textile wastewater using Phanerochaete chrysosporium. Bioprocess Engineering, 23, 721–726.

    Article  CAS  Google Scholar 

  • Spadaro, J. T., Gold, M. H., & Renganathan, V. (1992). Degradation of azo dyes by the lignin degrading fungus P. chrysosporium. Appl Environ Microbiol, 58, 2397–2340.

    CAS  Google Scholar 

  • Stolz, A. (2001). Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol, 56, 69–80.

    Article  CAS  Google Scholar 

  • Vasdev, K. & Kuhad, R. C. (1994). Decolorization of Poly R-478 (polyvinylamine sulphonate anthrapyridone) by Cyathus bulleri. Folia Microbiol, 39, 61–64.

    Article  CAS  Google Scholar 

  • Vasdev, K., Kuhad, R. C., & Saxena, R. K. (1995). Decolorization of triphenylmethane dyes by the bird’s nest fungus Cyathus bulleri. Curr Microbiol, 30, 269–272.

    Article  Google Scholar 

  • Wesenberg, D., Kyriakides, I., & Agathos, S. N. (2003). White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv, 22, 161–187.

    Article  CAS  Google Scholar 

  • Yeh, R. Y. L. & Thomas, A. (1995). Color difference measurement and color removal from dye wastewaters using different adsorbents. J Chem Technol Biotechnol, 63, 55–59.

    Article  CAS  Google Scholar 

  • Young, L. & Yu, J. (1997). Ligninase-catalysed decolorization of synthetic dyes. Water Resour, 31, 1187–1193.

    Article  CAS  Google Scholar 

  • Zhou, W. & Zimmerman, W. (1993). Decolourization of industrial effluents containing reactive dyes by actinomycetes. FEMS Microbiol Lett, 107, 157–162.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their thanks to Department of Biotechnology (DBT), Government of India, for funding the project on decolorization of dye waste waters. The authors acknowledge the help of Dr. V. S. Rathore, Former Professor of Environmental Biology, G. B. Pant University of Agriculture and Technology, Pant Nagar, Uttaranchal, India, for various suggestions during preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Chander Kuhad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diwaniyan, S., Kharb, D., Raghukumar, C. et al. Decolorization of Synthetic Dyes and Textile Effluents by Basidiomycetous Fungi. Water Air Soil Pollut 210, 409–419 (2010). https://doi.org/10.1007/s11270-009-0263-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0263-x

Keywords

Navigation