Skip to main content
Log in

Cu and Ni Mobility and Bioavailability in Sequentially Conditioned Soils

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The potential ecological hazard of metals in soils may be measured directly using a combination of chemical and biological techniques or estimated using appropriate ecological models. Terrestrial ecotoxicity testing has gained scientific credibility and growing regulatory interest; however, toxicity of metals has often been tested in freshly amended soils. Such an approach may lead to derivation of erroneous toxicity values (EC50) and thresholds. In this study, the impact of metal amendments on soil ecotoxicity testing within a context of ion competition was investigated. Four coarse-textured soils were amended with copper (Cu) and nickel (Ni), incubated for 16 weeks and conditioned by a series of total pore water replacements. RhizonTM extracted pore water Cu, Ni, pH and dissolved organic carbon (DOC) concentrations were measured after each replacement. Changes in ecotoxicity of soil solutions were also monitored using a lux-based biosensor (Escherichia coli HB101 pUCD607) and linked to variations in soil solution metal and DOC concentrations, pH and selected characteristics of the experimental soils (exchangeable calcium (Ca) and magnesium (Mg)). Prior to conditioning of soils, strong proton competition produced relatively high EC50 values (low toxicity) for both, Cu and Ni. The successive replacement of pore waters lead to a decline of labile pools of metals, DOC and alleviated the ecotoxicological protective effect of amendment impacted soil solution chemistry. Consequently, derived ecotoxicity values and toxicity thresholds were more reflective of genuine environmental conditions and the relationships observed more consistent with trends reported in historically contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Antunes, P. M. C., Hale, B. A., & Ryan, A. C. (2007). Toxicity versus accumulation for barley plants exposed to copper in the presence of metal buffers: Progress towards development of a terrestrial biotic ligand model. Environmental Toxicology and Chemistry, 26(11), 2282–2289.

    Article  CAS  Google Scholar 

  • Ashworth, D. J., & Alloway, B. J. (2007). Complexation of copper by sewage sludge-derived dissolved organic matter: Effects on soil sorption behaviour and plant uptake. Water, Air, and Soil Pollution, 182, 187–196.

    Article  CAS  Google Scholar 

  • Ball, D. F. (1964). Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soils. Journal of Soil Science, 15, 84–92.

    Article  CAS  Google Scholar 

  • Bongers, M., Rusch, B., & van Gestel, C. A. M. (2004). The effect of counterion and percolation on the toxicity of lead for the springtail Folsomia candida in soil. Environmental Toxicology and Chemistry, 23(1), 195–199.

    Article  CAS  Google Scholar 

  • Covelo, E. F., Vega, F. A., & Andrade, M. L. (2007). Heavy metal sorption and desorption capacity of soils containing endogenous contaminants. Journal of Hazardous Materials, 143, 419–430.

    Article  CAS  Google Scholar 

  • Dawson, J. J. C., Campbell, C. D., Towers, W., Cameron, C. M., & Paton, G. I. (2006). Linking biosensor responses to Cd, Cu and Zn partitioning in soils. Environmental Pollution, 142, 493–500.

    Article  CAS  Google Scholar 

  • Echevaria, G., Massoura, S. T., Sterckeman, T., Becquer, T., Schwartz, C., & Morel, J. L. (2006). Assessment and control of the bioavailability of nickel in soils. Environmental Toxicology and Chemistry, 25(3), 643–651.

    Article  Google Scholar 

  • Girotti, S., Ferre, E. N., Fumo, M. G., & Maiolini, E. (2008). Monitoring of environmental pollutants by bioluminescent bacteria. Analytica Chimica Acta, 608, 2–29.

    Article  CAS  Google Scholar 

  • Harter, R. D., & Naidu, R. (1995). Role of metal-organic complexation in metal sorption by soils. Advances in Agronomy, 55, 219–263.

    Article  CAS  Google Scholar 

  • Janssen, R. P. T., Peijnenburg, W. J. G. M., Posthuma, L., & van den Hoop, M. A. G. T. (1997). Equilibrium partitioning of heavy metals in Dutch field soils. I. Relationship between metal partition coefficients and soil characteristics. Environmental Toxicology and Chemistry, 16(12), 2470–2478.

    Article  CAS  Google Scholar 

  • Koster, M., de Groot, A., Vijver, M., & Peijnenburg, W. (2006). Copper in the terrestrial environment: Verification of a laboratory-derived terrestrial biotic ligand model to predict earthworm mortality with toxicity observed in field soils. Soil Biology and Biochemistry, 38, 1788–1796.

    Article  CAS  Google Scholar 

  • Krishnamurti, G. S. R., & Naidu, R. (2003). Solid-solution equilibria of cadmium in soil. Geoderma, 113, 17–30.

    Article  CAS  Google Scholar 

  • Lock, K., Criel, P., de Schamphelaere, K. A. C., van Eeckhout, H., & Janssen, C. R. (2007). Influence of calcium, magnesium, sodium, potassium and pH on copper toxicity to barley (Hordeum vulgare). Ecotoxicology and Environmental Safety, 68(2), 299–304.

    Article  CAS  Google Scholar 

  • Lock, K., Waegeneers, N., Smolders, E., Criel, P., Van Eeckhout, H., & Janssen, C. R. (2006). Effect of leaching and aging on the bioavailability of lead to the springtail Folsomia candida. Environmental Toxicology and Chemistry, 25(8), 2006–2010.

    Article  CAS  Google Scholar 

  • Luo, X.-S., Li, L.-Z., & Zhou, D.-M. (2008). Effect of cations on copper toxicity to wheat root: Implications for the biotic ligand model. Chemosphere, 73, 401–406.

    Article  CAS  Google Scholar 

  • Ma, Y., Lombi, E., Nolan, A. L., & McLaughlin, M. J. (2006). Short-term natural attenuation of copper in soils: Effects of time, temperature and soil characteristics. Environmental Toxicology and Chemistry, 25(3), 652–658.

    Article  CAS  Google Scholar 

  • Meers, E., Du Laing, G., Unamuno, V. G., Lesage, E., Tack, F. M. G., & Verloo, M. G. (2006). Water extractability of trace metals from soils: Some pitfalls. Water, Air, and Soil Pollution, 176, 21–35.

    Article  CAS  Google Scholar 

  • Normandin, V., Kotuby-Amacher, J., & Miller, R. O. (1998). Modification of the ammonium acetate extractant for the determination of exchangeable cations in calcareous soils. Communications in Soil Science and Plant Analysis, 29(11–14), 1785–1791.

    Article  CAS  Google Scholar 

  • Oorts, K., Bronckaers, H., & Smolders, E. (2006). Discrepancy of the microbial response to elevated Cu between freshly spiked and long-term contaminated soils. Environmental Toxicology and Chemistry, 25, 845–853.

    Article  CAS  Google Scholar 

  • Oorts, K., Ghesquiere, U., & Smolders, E. (2007). Leaching and aging decrease nickel toxicity to soil microbial processes in soils freshly spiked with nickel chloride. Environmental Toxicology and Chemistry, 26(6), 1130–1138.

    Article  CAS  Google Scholar 

  • Paton, G. I., Killham, K., Weitz, H. J., & Semple, K. T. (2005). Biological tools for the assessment of contaminated land: applied soil ecotoxicology. Soil Use and Management, 21, 487–499.

    Article  Google Scholar 

  • Paton, G. I., Viventsova, E., Kumpene, J., Wilson, M. J., Weitz, H. J., & Dawson, J. J. C. (2006). An ecotoxicity assessment of contaminated forest soils from the Kola Peninsula. Science of the Total Environment, 355(1–3), 106–117.

    Article  CAS  Google Scholar 

  • Sauvé, S., Hendershot, W. H., & Allen, H. E. (2000). Solid-solution partitioning of metals in contaminated soils: Dependence on pH, total metal burden and organic matter. Environmental Science and Technology, 34(7), 1125–1131.

    Article  Google Scholar 

  • Smolders, E., Buekers, J., Oliver, I., & McLaughlin, M. J. (2004). Soil properties affecting toxicity of zinc to soil microbial properties in laboratory-spiked and field-contaminated soils. Environmental Toxicology and Chemistry, 23(11), 2633–2640.

    Article  CAS  Google Scholar 

  • Speir, T. W., Kettles, H. A., Percival, H. J., & Parshotam, A. (1999). Is soil acidification the cause of biochemical responses when soils are amended with heavy metal salts? Soil Biology and Biochemistry, 31, 1953–1961.

    Article  CAS  Google Scholar 

  • Steenbergen, N. T. T. M., Iaccino, F., de Winkel, M., Reijnders, L., & Peijnenburg, W. J. G. M. (2005). Development of a biotic ligand model and a regression model predicting acute copper toxicity to the earthworm Aporrectodea caliginosa. Environmental Science and Technology, 39(15), 5694–5702.

    Article  CAS  Google Scholar 

  • Sumner, M. E. (1999). Handbook of Soil Science. Boca Raton: CRC.

    Google Scholar 

  • Tandy, S., Barbosa, V., Tye, A., Preston, S., Paton, G., Zhang, H., et al. (2005). Comparison of different microbial bioassays to assess metal-contaminated soils. Environmental Toxicology and Chemistry, 24(3), 530–536.

    Article  CAS  Google Scholar 

  • Thakali, S., Allen, H. E., Di Toro, D. M., Ponizovsky, A. A., Rooney, C. P., Zhao, F.-J., et al. (2006). Terrestrial biotic ligand model. 2. Application to Ni and Cu toxicities to plants, invertebrates, and microbes in soil. Environmental Science and Technology, 40(22), 7094–7100.

    Article  CAS  Google Scholar 

  • Tipping, E., Rieuwerts, J., Pan, G., Ashmore, M. R., Lofts, S., Hill, M. T. R., et al. (2003). The solid-solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales. Environmental Pollution, 125, 213–225.

    Article  CAS  Google Scholar 

  • Trott, D., Dawson, J. J. C., Killham, K. S., Miah, Md R. U., Wilson, M. J., & Paton, G. I. (2007). Comparative evaluation of a bioluminescent bacterial assay in terrestrial ecotoxicity testing. Journal of Environmental Monitoring, 9(1), 44–50.

    Article  CAS  Google Scholar 

  • Tye, A. M., Young, S., Crout, N. M. J., Zhang, H., Preston, S., Zhao, F. J., et al. (2004). Speciation and solubility of Cu, Ni and Pb in contaminated soils. European Journal of Soil Science, 55, 579–590.

    Article  CAS  Google Scholar 

  • van Gestel, C. (2008). Physico-chemical and biological parameters determine metal bioavailability in soils. Science of the Total Environment, 406, 385–395.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Biotechnology and Biological Sciences Research Council (BBSRC), United Kingdom. Miss Elizabeth E. Diplock is acknowledged for the preparation of amended soils.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenka Maderova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maderova, L., Dawson, J.J.C. & Paton, G.I. Cu and Ni Mobility and Bioavailability in Sequentially Conditioned Soils. Water Air Soil Pollut 210, 63–73 (2010). https://doi.org/10.1007/s11270-009-0224-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0224-4

Keywords

Navigation