Skip to main content

Advertisement

Log in

Kinetics of Chromium Ion Removal from Tannery Wastes Using Amberlite IRA-400 Cl and its Hybrids

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A strong base anion exchange resin Amberlite IRA-400 Cl and its hybrids with Mn(OH)2 and Cu(OH)2 are used for the removal of chromium from the synthetic spent tannery bath. The recovery is examined by varying the experimental conditions, viz., resin dosage, stirring speed, and temperature. The rate of chromium removal by Amberlite IRA-400 Cl increased almost four times when the resin dosage was increased from 0.2 to 1.0 g. Furthermore, the rate of chromium sorption almost doubled when the stirring speed was increased from 100 to 1,000 rpm, suggesting that the sorption is a diffusionally controlled process. The chromium removal capacity also increased with the rise of temperature, showing the endothermic nature of the process. The results are explained with the help of film diffusion, particle diffusion, and Lagergren pseudo-first-order kinetic models. The kinetics results of the Amberlite IRA-400 Cl are compared with its hybrid anion exchange resins IRA-400 Mn(OH)2 and IRA-400 Cu(OH)2. It is found that the hybrid ion exchangers have greater removal ability and fast kinetics as compared to the parent exchanger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Awan, M. A., Baig, M. A., Iqbal, J., Aslam, M. R., & Ijaz, N. (2003). Recovery of chromium (III) from tannery wastewater. Journal of Applied Sciences and Environmental Management, 7, 5–8.

    CAS  Google Scholar 

  • Ayoob, S., Gupta, A. K., Bhakat, P. B., & Bhat, V. T. (2008). Investigations on the kinetics and mechanisms of sorptive removal of fluoride from water using alumina cement granules. Chemical Engineering Journal, 140, 6–14.

    Article  CAS  Google Scholar 

  • Blaney, L. M., Cinar, S., & SenGupta, A. K. (2007). Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Research, 41, 1603–1613.

    Article  CAS  Google Scholar 

  • Cumbal, L., & SenGupta, A. K. (2005). Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: Role of Donnan membrane effect. Environmental Science and Technology, 39, 6508–6515.

    Article  CAS  Google Scholar 

  • Cumbal, L., Greenleaf, J., Leun, D., & SenGupta, A. K. (2003). Polymer supported inorganic nanoparticles: Characterization and environmental applications. Reactive and Functional Polymers, 54, 167–180.

    Article  CAS  Google Scholar 

  • Dabrowski, A., Hubicki, Z., Podkoscielny, P., & Robens, E. (2004). Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere, 56, 91–106.

    Article  CAS  Google Scholar 

  • DeMarco, M. J., SenGupta, A. K., & Greenleaf, J. E. (2003). Arsenic removal using a polymeric/inorganic hybrid sorbent. Water Research, 37, 164–176.

    Article  CAS  Google Scholar 

  • Eary, L. E., & Ray, D. (1987). Kinetics of chromium(III) oxidation to chromium(VI) by reaction with manganese dioxide. Environmental Science and Technology, 21, 1187–1193.

    Article  Google Scholar 

  • Erdem, M., Altundogan, H. S., & Tumen, F. (2004). Removal of hexavalent chromium by using heat-activated bauxite. Mineral Engineering, 17, 1045–1052.

    Article  CAS  Google Scholar 

  • Gode, F., & Pehlivan, E. (2003). A comparative study of two chelating ion-exchange resins for the removal of chromium(III) from aqueous solution. Journal of Hazardous Materials, B100, 231–243.

    Article  CAS  Google Scholar 

  • Herrmann, M. S. (1994). Testing the waters for chromium. Journal of Chemical Education, 71, 323–324.

    Article  CAS  Google Scholar 

  • Kocaoba, S., & Akcin, G. (2002). Removal and recovery of chromium and chromium speciation with MINTEQA2. Talata, 57, 23–30.

    Article  CAS  Google Scholar 

  • Kotas, J., & Stasicka, Z. (2000). Commentary: Chromium occurrence in the environment and methods of its speciation. Environmental Pollution, 107, 263–283.

    Article  CAS  Google Scholar 

  • Mohan, D., & Pittman, C. U., Jr. (2006). Review: Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. Journal of Hazardous Materials, 137, 762–811.

    Article  CAS  Google Scholar 

  • Mustafa, S., Bashir, H., Rehana, N., & Naeem, A. (1997). Selectivity reversal and dimerization of chromate in the exchanger Amberlite IRA-400. Reactive and Functional Polymers, 34, 135–144.

    Article  CAS  Google Scholar 

  • Mustafa, S., Shah, K. H., Naeem, A., Waseem, M., & Tahir, M. (2008). Chromium (III) removal by weak acid exchanger Amberlite IRC-50 (Na). Journal of Hazardous Materials, 160, 1–5.

    Article  CAS  Google Scholar 

  • Nakayama, E., Kuwamoto, T., Tsurubo, G., & Fujinaga, T. (1981). Chemical speciation of chromium in seawater: Part2. Effect of manganese oxides and reducible organic materials on the redox process of chromium. Analytica Chimica Acta, 130, 401–404.

    Article  CAS  Google Scholar 

  • Narin, I., Kars, A., & Soylak, S. (2008). A novel solid phase extraction procedure on Amberlite XAD-1180 for speciation of Cr(III), Cr(VI) and total chromium in environmental and pharmaceutical samples. Journal of Hazardous Materials, 150, 453–458.

    Article  CAS  Google Scholar 

  • Pehlivan, E., & Cetin, S. (2009). Sorption of Cr(VI) ions on two Lewatit-anion exchange resins and their quantitative determination using UV–visible spectrophotometer. Journal of Hazardous Materials, 163, 448–453.

    Article  CAS  Google Scholar 

  • Petruzzelli, D., Santori, M., Passino, R., & Tiravanti, G. (1991). Cr(III) recovery and separation from spent tannery baths by carboxylic ion exchange resins “New Developments in Ion Exchange”. Proceedings of the International Conference on Ion Exchange Resins (pp. 383–388). Kodansha, Tokyo, Japan.

  • Reichenberg, D. (1953). Properties of ion exchange resins in relation to their structure. III. Kinetics of exchange. Journal of American Chemical Society, 75, 589–597.

    Article  CAS  Google Scholar 

  • Rengaraj, S., Yeon, K. H., & Moon, S. H. (2001). Removal of chromium from water and wastewater by ion exchange resins. Journal of Hazardous Materials, B87, 273–287.

    Article  Google Scholar 

  • Rengaraj, S., Joo, C. K., Kim, Y., & Yi, J. (2003). Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H. Journal of Hazardous Materials, 102, 257–275.

    Article  CAS  Google Scholar 

  • Scheckel, K. G., & Sparks, D. L. (2001). Temperature effects on nickel sorption kinetics at the mineral– water interface. Soil Science Society of America Journal, 65, 719–728.

    Article  CAS  Google Scholar 

  • Sengupta, A. K., & Lim, L. (1988). Modeling chromate ion-exchange processes. AIChE Journal, 34, 2019–2029.

    Article  CAS  Google Scholar 

  • Tadesse, I., Isoaho, S. A., Green, F. B., & Puhakka, J. A. (2006). Lime enhanced chromium removal in advanced integrated wastewater pond system. Bioresource Technology, 97, 529–534.

    Article  CAS  Google Scholar 

  • Tenório, J. A. S., & Espinosa, D. C. R. (2001). Treatment of chromium plating process effluents with ion exchange resins. Waste Management, 21, 637–642.

    Article  Google Scholar 

  • The Gazette of Pakistan, Extra. (2000). Statutory notification (S.R.O). Government of Pakistan Ministry of Environment, Local Government and Rural Development Notification, Islamabad. S.R.O. 549 (1)/2000.

  • van Heerden, P. V., Jenkins, I. R., Woods, W. P. D., Rossi, E., & Cameron, P. D. (1994). Death by tanning—A case of fatal basic chromium sulfate poisoning. Intensive Care Medicine, 20, 145–147.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Mustafa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mustafa, S., Ahmad, T., Naeem, A. et al. Kinetics of Chromium Ion Removal from Tannery Wastes Using Amberlite IRA-400 Cl and its Hybrids. Water Air Soil Pollut 210, 43–50 (2010). https://doi.org/10.1007/s11270-009-0221-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0221-7

Keywords

Navigation