Skip to main content

Advertisement

Log in

Nitrogen Leaching in Intensive Cropping Systems in Tam Duong District, Red River Delta of Vietnam

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The environmental and economic consequences of nitrogen (N) lost in rice-based systems in Vietnam is important but has not been extensively studied. The objective of this study was to quantify the amount of N lost in major cropping systems in the Red River Delta. An experiment was conducted in the Red River Delta of Vietnam, on five different crops including rose, daisy, cabbage, chili, and a rice–rice–maize rotation during 2004 and 2005. Core soil samples were taken periodically in 20-cm increments to a depth of 1 m and analyzed for nitrate–nitrogen and ammonium–nitrogen. The results indicate appreciable leaching losses on N in high-rainfall and irrigation conditions, especially when fertilizer application was not well synchronized with crop N demand. Highest annual leaching losses of N were recorded in flowers with 185–190 mm of percolation and 173–193 kg N ha−1, followed by vegetable (cabbage and chili) with 120–122 mm of percolation and 112–115 kg N ha−1, while it was lowest in rice with about 50 kg N ha−1. We developed a simple N transport model that combined water and N movement through the soil profile. In most cases, the model accurately predicted the seasonal dynamics of N as well as N flow between soil layers and the amounts of N lost from the soil profile. The simulated results of N leaching with soil “puddling” conditions illustrate the advantage of an impermeable or hardpan layer in increasing water and nutrient use efficiencies in these soils. These model results also showed that it is possible to accurately estimate N losses with only a few parameters and helped us identify the risks of N leaching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Addiscott, T. M. (1990). Measurement of nitrate leaching: a review of methods. In R. Calviet (Ed.), Nitrates-Agriculture-Eau (pp. 157–168). Paris-Grignon: INRA (Institut National de Recherches Agronomique).

    Google Scholar 

  • Addiscott, T. M., & Whitmore, A. P. (1987). Computer simulation of changes in soil mineral nitrogen and crop nitrogen during autumn, winter and spring. Journal of Agricultural Science, 109, 141–157.

    Article  Google Scholar 

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No. 56. Rome: FAO.

    Google Scholar 

  • Averjanov, S. F. (1950). About permeability of subsurface soils in case of incomplete saturation. In: Engineering collection, vol. 7 (1950), quoted by P. Ya. Palubarinova, 1962. The theory of groundwater movement (English translation by I. M. Roger DeWiest) (pp. 10–21). Princeton: Princeton University Press.

  • Babiker, I. S., Mohamed, M. A. A., Terao, H., Kato, K., & Ohta, K. (2004). Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system. Environment International, 29, 1009–1017.

    Article  CAS  Google Scholar 

  • Boogaard, H. L., Van Diepen, C. A., & Roetter, R. P. (1998). WOFOST 7.1: User's guide for the WOFOST 7.1 crop growth simulation model and WOFOST Control Center. Wageningen: DLO Winand Staring Centre.

    Google Scholar 

  • Bremner, J. M. (1996). Nitrogen-total. In D. L. Sparks, A. L. Page, C. T. Johnston & M. E. Summer (Eds.), Methods of soil analysis. Part 3. Chemical methods. SSSA Book Series No. 5 (pp. 1085–1121). Madison: SSSA.

    Google Scholar 

  • Brutsaert, W. (1966). Probability laws for pore-size distributions. Soil Science, 101, 85–92.

    Article  Google Scholar 

  • Chen, S.-K., & Liu, C. W. (2002). Analysis of water movement in paddy rice fields (I) experimental studies. Journal of Hydrology, 260, 206–215.

    Article  Google Scholar 

  • Chen, S.-K., Liu, C. W., & Huang, H.-C. (2002). Analysis of water movement in paddy rice fields (II) simulation studies. Journal of Hydrology, 268, 259–271.

    Article  Google Scholar 

  • Chi, H. T., & Bo, L. V. (2002). Suitability map of Vanhoi commune. Vietnam: Soil and Fertilizer Research Station Vinh Phuc Agricultural and Rural Development Department. (Vietnamese).

    Google Scholar 

  • Chikowo, R., Mapfumo, P., Nyamugafata, P., & Giller, K. E. (2004). Mineral N dynamics, leaching and nitrous oxide losses under maize following two-year improved fallows on a sandy loam soil in Zimbabwe. Plant Soil, 259, 315–330.

    Article  CAS  Google Scholar 

  • Chin, W., & Kroontie, W. (1963). Urea hydrolysis and subsequent loss of ammonia. Soil Science Society of America, 27, 316–319.

    CAS  Google Scholar 

  • Chowdary, V. M., Rao, N. H., & Sarma, P. B. S. (2004). A coupled soil water and nitrogen balance model for flooded rice fields in India. Agriculture, Ecosystems & Environment, 103, 425–441.

    Article  CAS  Google Scholar 

  • Di, H. J., & Cameron, K. C. (2002). Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies. Nutrient Cycling in Agroecosystems, 64, 237–256.

    Article  CAS  Google Scholar 

  • Dobermann, A., Witt, C., Dawe, D., Abdulrachman, S., Gines, H. C., Nagarajan, R., et al. (2002). Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crops Research, 74, 37–66.

    Article  Google Scholar 

  • Ersahin, S., & Rustu Karaman, M. (2001). Estimating potential nitrate leaching in nitrogen fertilized and irrigated tomato using the computer model NLEAP. Agricultural Water Management, 51, 1–12.

    Article  Google Scholar 

  • Fang, B., Wang, G. H., Van den Berg, M., & Roetter, R. (2005). Identification of technology options for reducing nitrogen pollution in cropping systems of Pujiang. Journal of Zhejiang University Science, 6b, 981–990.

    Article  CAS  Google Scholar 

  • FAO (1976). A framework for land evaluation. Rome: FAO.

    Google Scholar 

  • FAO/UNESCO (1974). Soil map of the world, 1:5,000,000. Paris: UNESCO.

    Google Scholar 

  • Hasegawa, S., & Kasubuchi, T. (1993). Water regimes in fields with vegetation. In T. Miyazaki, S. Hasegawa & T. Kasubuchi (Eds.), Water flow in soils (pp. 223–250). New York: Marcel Dekker.

    Google Scholar 

  • Hauggaard-Nielsen, H., Ambus, P., & Jensen, E. S. (2003). The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barley. Nutrient Cycling in Agroecosystems, 65, 289–300.

    Article  CAS  Google Scholar 

  • Helwig, T. G., Madramootoo, C. A., & Dodds, G. T. (2002). Modelling nitrate losses in drainage water using DRAINMOD 5.0. Agricultural Water Management, 56, 153–168.

    Article  Google Scholar 

  • IRMLA (2005). Country report from Tamduong project, Vietnam. http://www.alterra-research.nl/pls/portal30/docs/folder/irmla/irmla/p_frames_page.htm. Accessed November 2006.

  • Janssen, B. H. (1998). Efficient use of nutrients: an art of balancing. Field Crops Research, 56, 197–201.

    Article  Google Scholar 

  • Jansson, J. M., & Anderson, T. (1988). Simulation of runoff and nitrate leaching from an agricultural district in Sweden. Journal of Hydrology, 99, 33–47.

    Article  CAS  Google Scholar 

  • Jemison, J. M., Jabro, J. D., & Fox, R. H. (1994). Evaluation of LEACHIM. II. Simulation of nitrate leaching from nitrogen-fertilized and manured corn. Agronomy Journal, 86, 852–859.

    CAS  Google Scholar 

  • Lal, R., & Shukla, M. K. (2004). Principles of soil physics. New York: Marcel Dekker.

    Google Scholar 

  • Lawes Agricultural Trust (2003). GenStat® release 7.1 reference manual. Oxford: VSN International.

    Google Scholar 

  • Liu, X., Ju, X., Zhang, F., Pan, J., & Christie, P. (2003). Nitrogen dynamics and budgets in a winter wheat-maize cropping system in the North China Plain. Field Crops Research, 83, 111–124.

    Article  Google Scholar 

  • Mantovi, P., Fumagalli, L., Beretta, G. P., & Guermandi, M. (2006). Nitrate leaching through the unsaturated zone following pig slurry applications. Journal of Hydrology, 316, 195–212.

    Article  Google Scholar 

  • Miller, R. W., & Gardiner, D. T. (2001). Soils in our environment (9th ed.). Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Molz, F. J. (1981). Simulation of plant-water uptake. In I. K. Iskandar (Ed.), Modeling wastewater renovation: Land application (pp. 69–91). New York: Wiley.

    Google Scholar 

  • Molz, F. J., & Remson, I. (1970). Extraction term models of soil moisture use by transpiring plants. Water Research, 6, 1346–1356.

    Article  CAS  Google Scholar 

  • Neeteson, J. J. (1995). Nitrogen management for intensively grown arable crops and field vegetables. In P. E. Bacon (Ed.), Nitrogen fertilization in the environment (pp. 295–325). New York: Marcel Dekker.

    Google Scholar 

  • Radcliffe, D. E., & Rasmussen, T. C. (2000). Soil water movement. In M. E. Summner (Ed.), Handbook of soil science. Boca Raton: CRC.

    Google Scholar 

  • Radcliffe, D. E., Gupte, S. M., & Box, J. J. E. (1998). Solute transport at the pedon and polypedon scales. Nutrient Cycling in Agroecosystems, 50, 77–84.

    Article  CAS  Google Scholar 

  • Rolston, D. E., & Marino, M. A. (1976). Simulation transport of nitrate and gaseous denitrification products in soil. Soil Science Society of America Journal, 46, 860–865.

    Article  Google Scholar 

  • Tripathi, B. P., Ladha, J. K., Timsina, J., & Pascua, S. R. (1997). Nitrogen dynamics and balance in intensified rain fed lowland rice-based cropping systems. Soil Science Society of America Journal, 61, 812–821.

    Article  CAS  Google Scholar 

  • Van Keulen, H., & Seligman, N. G. (1987). Simulation of water use, nitrogen nutrition and growth of a spring wheat crop. Simulation monographs. Wageningen: Pudoc.

    Google Scholar 

  • Van Wijk, S., Milwain, G., Zhang, X., Van den Bosch, R., Quang, V. Q., Thao, V. T., et al. (2006). Opportunities and threats for safe vegetable markets in China, Vietnam and Thailand. MAPET Report 2, Alterra-report 1285-2. Wageningen: Alterra.

    Google Scholar 

  • Verloop, J., Boumans, L. J. M., Van Keulen, H., Oenema, J., Hilhorst, G. J., Aarts, H. F. M., et al. (2006). Reducing nitrate leaching to groundwater in an intensive dairy farming system. Nutrient Cycling in Agroecosystems, 74, 59–74.

    Article  Google Scholar 

  • Wopereis, M. C. S., Wösten, J. H. M., Bouma, J., & Woodhead, T. (1992). Hydraulic resistance in puddled rice soils: measurement and effects on water movement. Soil & Tillage Research, 24, 199–209.

    Article  Google Scholar 

  • Wopereis, M. C. S., Bouman, B. A. M., Kropff, M. J., Ten Berge, H. F. M., & Maligaya, A. R. (1994). Water use efficiency of flooded rice fields I. Validation of the soil-water balance model SAWAH. Agricultural Water Management, 26, 277–289.

    Article  Google Scholar 

  • Yang, H. S. (1996). Modelling organic matter mineralization and exploring options for organic matter management in arable farming in northern China. Ph.D. Thesis, Wageningen Agricultural University, Wageningen, the Netherlands.

  • Yu, H. M., Li, Z. Z., Gong, Y. S., Mack, U., Feger, K. H., & Stahr, K. (2006). Water drainage and nitrate leaching under traditional and improved management of vegetable-cropping systems in the North China Plain. Journal of Plant Nutrition and Soil Science, 169, 47–51.

    Article  CAS  Google Scholar 

  • Zaradny, H. (1993). Groundwater flow in saturated and unsaturated soil. Rotterdam: Balkema.

    Google Scholar 

Download references

Acknowledgements

The research was funded by project 322 of the Vietnam Ministry of Education and Training. I would like to thank Dr. Edward Gerard Gregorich from the Central Experimental Farm, Ottawa, Ontario, Canada, Agriculture and Agri-Food Canada for his comments and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. T. Mai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mai, V.T., Van Keulen, H. & Roetter, R. Nitrogen Leaching in Intensive Cropping Systems in Tam Duong District, Red River Delta of Vietnam. Water Air Soil Pollut 210, 15–31 (2010). https://doi.org/10.1007/s11270-009-0219-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0219-1

Keywords

Navigation