Skip to main content

Advertisement

Log in

A Numerical Approach to Simulate the Biogeochemical Involvement in a Coastal Reduced Groundwater Environment

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Bacteria-mediated reduction processes play a decisive role in the water quality alterations in the subsurface environment of coastal aquifers. Availability of organic carbon as the electron donor with other electron acceptors such as NO3 , MnO2, Fe(OH)3 and SO4 2− induces different bacteria to activate under aerobic and anaerobic conditions. A two-dimensional reactive transport model has been developed to simulate the bacteria-mediated reduction reactions in a coastal aquifer. The model explains the utilisation of O2, NO3 , MnO2, Fe(OH)3 and SO4 2− as electron acceptors for the oxidation of organic carbon in the aquifer under aerobic and anaerobic conditions. The conceptual model consists of three different phases named as bio phase, mobile phase and matrix phase. Model parameters are adopted from literature on bacteria-mediated multi-component modelling and bioremediation processes. Monod kinetic equation is assumed to formulate the bacterial growth. The model explains the behaviours of aerobic and anaerobic bacteria under the availability of organic carbon. Two scenarios are tested and numerical results are discussed. The present numerical study highlights the possibility of the simulation of the formation of reduced environments in coastal aquifers which has not received much attention of groundwater modelling community yet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Andersen, P. F., Mercer, J. W., & White, H. O. (1998). Numerical modelling of seawater intrusion at Hallandale Florida. Ground Water, 26, 619–630.

    Article  Google Scholar 

  • Appelo, C. A. J., & Postma, D. (2007). Geochemistry, groundwater and pollution (2nd ed.). Leiden: Balkema.

    Google Scholar 

  • Bear, J., Cheng, A. H.-D., Sorec, S., Ouazar, D., & Herrera, I. (1999). Seawater intrusion in coastal aquifers—Concepts, methods and practices. Dordrecht: Kluwer.

    Google Scholar 

  • Chappelle, F. H. (2001). Ground-water, microbiology and geochemistry (2nd ed.). Canada: Wiley.

    Google Scholar 

  • Chiang, C. Y., Dawson, C. N., & Wheeler, M. F. (1991). Modelling of in situ bio restoration of organic compounds in groundwater. Transport in Porous Media, 6, 667–702.

    Article  CAS  Google Scholar 

  • Christensen, T. H., Bjerg, P. L., Banwart, S. A., Jakobsen, R., Heron, G., & Albrechtsen, H. J. (2000). Characterization of redox conditions in groundwater contaminant plumes. Journal of Contaminant Hydrology, 45, 165–241.

    Article  CAS  Google Scholar 

  • Diersh, H. J. G., & Kolditz, O. (2002). Variable-density flow and transport in porous media: Approaches and challenges. Advances in Water Resources, 25, 899–944.

    Article  Google Scholar 

  • Essink Gualbert, H. P. O. (2001). Density dependent groundwater flow (pp. 12–50). Utrecht: Academic Publishing of Utrecht University.

    Google Scholar 

  • Ghassemi, F., Chen, T. H., Jakeman, A. J., & Jacobson, G. (1993). Two and three dimensional simulation of seawater intrusion: Performances of the “SUTRA” and HST3D” models. AGSO Journal of Australian Geology and Geophysics, 14(2–3), 219–226.

    Google Scholar 

  • Hiroshiro, Y., Jinno, K., & Berndtsson, R. (2006). Hydrogeochemical properties of a salinity affected coastal aquifer in Western Japan. Hydrological Processes, 20, 1425–1435.

    Article  CAS  Google Scholar 

  • Hunter, K. S., Wang, Y., & Cappellen, P. V. (1998). Kinetic modelling of microbially-driven redox chemistry of subsurface environments: Coupling transport, microbial metabolism and geochemistry. Journal of Hydrology, 209, 53–80.

    Article  CAS  Google Scholar 

  • Islam, J., Singhal, N., & O’sullivan, M. (2001). Modelling biogeological processes in leachate-contaminated soils: A review. Transport in Porous Media, 43, 407–440.

    Article  CAS  Google Scholar 

  • Jinno, K., & Ueda, T. (1978). On the numerical solution of convective dispersion equation by shifting particles. Transactions of the Japan Society of Civil Engineers, 10, 126–129.

    Google Scholar 

  • Jinno, K., Hosokawa, T., Hiroshiro, Y., & Ohgushi, M. (2001). Mixing of fresh and salt groundwater in a sandy beach using pipe draining to extend the unsaturation zone. Paper presented at the 3rd International Conference on Future Groundwater Resources at Risk, Lisbon, Portugal, pp. 641–648.

  • Jinno, K., Akagi, K., Hiroshiro, Y., Hosokawa, T., & Yasumoto, J. (2007). Geochemical processes and their modelling at the fresh and salt water mixing zone. Proceedings of ModelCARE 2007, Denmark, IAH Publications, 320, 2008, pp. 191–196.

  • Kinzelbach, W., & Schäfer, W. (1994). Modelling and design of in situ bioremediation measures. IAHS, 220, 399–412.

    CAS  Google Scholar 

  • Konikow, L. F., Granato, G. E., & Hornberger, G. Z. (1994). User’s guide to revised method of characteristic solute-transport model (MOC-version 3.1). Water resources investigations report, US Geological Survey.

  • Kooi, H., & Groen, J. (2001). Offshore continuation of coastal groundwater systems: Predictions using sharp-interface approximations and variable-density flow modelling. Journal of Hydrology, 246(1–4), 19–35.

    Article  Google Scholar 

  • Lengsing, H. J., Vogt, M., & Herring, B. (1994). Modelling of biologically mediated redox processes in the subsurface. Journal of Hydrology, 159, 125–143.

    Article  Google Scholar 

  • Liu, C. W., & Narisman, T. N. (1989). Redox-controlled multiple-species reactive chemical transport 1. Model development. Water Resources Research, 25(5), 869–882.

    Article  CAS  Google Scholar 

  • Nakagawa, K., Hosokawa, T., Iwamitsu, K., Hiroshiro, Y., & Jinno, K. (2002). Study of the mixing of fresh and salt ground groundwater in a sandy beach using pipe drains to extend the unsaturated zone. Journal of Hydraulic Engineering, JSCE, 46, 181–186.

    Google Scholar 

  • Pinder, G. F., & Cooper, H. H. (1970). A numerical technique for calculating the transient position of the saltwater front. Water Resources Research, 6, 875–880.

    Article  Google Scholar 

  • Rittmann, B. E., & McCarty, P. L. (2001). Environmental biotechnology: principles and applications. New York: McGraw-Hill.

    Google Scholar 

  • Rivera, A., Ledoux, E., & Sauvagna, S. (1990). A compatible single-phase/two-phase numerical model: 2. Application to a coastal aquifer in Mexico. Groundwater, 28(2), 215–223.

    CAS  Google Scholar 

  • Schäfer, D., Schäfer, W., & Kinzelbach, W. (1998a). Simulation of reactive processes related to biodegradation in aquifers 1. Structure of the three-dimensional reactive transport model. Journal of Contaminant Hydrology, l31, 167–186.

    Article  Google Scholar 

  • Schäfer, D., Schäfer, W., & Kinzelbach, W. (1998b). Simulation of reactive processes related to biodegradation in aquifers 2. Model application to a column study on organic carbon degradation. Journal of Contaminant Hydrology, 31, 187–209.

    Article  Google Scholar 

  • Snyder, M., Taillefert, M., & Ruppel, C. (2004). Redox zonation at the saline-influenced boundaries of a permeable surfacial aquifer: Effects of physical forcing on the biogeochemical cycling of iron and manganese. Journal of Hydrology, 296, 164–178.

    Article  CAS  Google Scholar 

  • Volker, R. E., & Rushton, K. R. (1982). An assessment of the importance of some parameters for seawater intrusion in aquifers and a comparison of dispersive and sharp interface modelling approaches. Journal of Hydrology, 6(3–4), 239–250.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edangodage Duminda Pradeep Perera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perera, E.D.P., Jinno, K. A Numerical Approach to Simulate the Biogeochemical Involvement in a Coastal Reduced Groundwater Environment. Water Air Soil Pollut 207, 369–389 (2010). https://doi.org/10.1007/s11270-009-0143-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0143-4

Keywords

Navigation