Skip to main content
Log in

Treatment of Waters Containing the Thiocarbamate Herbicide Molinate through an Adsorption/Bio-Regeneration System using a Low-Cost Adsorbent

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The feasibility of using recycled granular tire rubber (GTR) to remove molinate from contaminated water bodies was evaluated in this study. Adsorption equilibrium data was well described by a linear isotherm, and the adsorption was completely reversible. Breakthrough curves showed column efficiencies of approximately 40%, based on total capacity, and complete bed regeneration was achieved using clean water. The effluent from the regeneration step was successfully decontaminated using a defined bacterial mixed culture, capable of molinate mineralization. It was shown that this treated water can be used for regenerating a subsequently saturated bed. The GTR adsorbent showed two important features: complete reversibility towards molinate adsorption and stability along successive adsorption/bio-regeneration cycles. Common adsorbents, such as activated carbons and resins, loose performance very quickly under the same conditions, due to irreversible adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BV:

Number of bed volumes, \( {\text{BV}} = tQ/V_{\text{b}} \)

C :

Concentration of molinate in the liquid phase (mg dm−3)

C 0 :

Concentration of molinate in the column inlet stream (mg dm−3)

C eq :

Molinate concentration in the liquid phase, in equilibrium with a concentration q eq of molinate in the adsorbed phase (mg g−1)

L b :

Bed length (cm)

m ads :

Mass of adsorbent in the bed (g)

Q :

Flow rate (cm3 s−1)

q :

Molinate adsorbed concentration (mg g−1)

q 0 :

Molinate adsorbed concentration, in equilibrium with a concentration C 0 of molinate in the liquid phase (mg g−1)

q bt :

Bed capacity at breakthrough (mg g−1)

q bed :

Total bed capacity based on breakthrough data (mg g−1)

q eq :

Molinate adsorbed concentration, in equilibrium with a concentration C eq of molinate in the liquid phase (mg g−1)

q isot :

Total bed capacity based on adsorption equilibrium data (mg g−1)

S :

Column cross-section (cm2)

t :

Time (s)

t bt :

Breakthrough time (h)

V b :

Bed volume (cm3)

HPLC:

High performance liquid chromatography

References

  • Aktas, O., & Çençen, F. (2007). Bioregeneration of activated carbon: a review. International Biodeterioration & Biodegradation, 59, 257–272.

    Article  CAS  Google Scholar 

  • Alam, J. B., Dikshit, A. K., & Bandyopadhyay, M. (2000). Efficacy of adsorbents for 2,4-D and atrazine removal from water environment. Global NEST. International Journal, 2, 139–148.

    Google Scholar 

  • Alam, J. B., Dikshit, A. K., & Bandyopadhyay, M. (2002). Effect of different inorganic and organic compounds on sorption of 2,4-D and atrazine. Journal of Environmental Science and Health Part B, 37, 541–560.

    Article  CAS  Google Scholar 

  • Alam, J. B., Dikshit, A. K., & Bandyopadhyay, M. (2005). Evaluation of thermodynamic properties of sorption of 2,4-D and atrazine by tire granules. Separation and Purification Technology, 42, 85–90.

    Article  CAS  Google Scholar 

  • Albanis, T. A., Hela, D. G., Sakellarides, T. M., & Konstantinou, I. K. (1998). Monitoring of pesticide residues and their metabolites in surface and underground waters of Imathia (N. Greece) by means of solid-phase extraction disks and gas chromatography. Journal of Chromatography, 823, 59–71.

    Article  CAS  Google Scholar 

  • Barreiros, L., Nogales, B., Manaia, C. M., Silva-Ferreira, A. C., Pieper, D. H., Reis, M. A., et al. (2003). A novel pathway for mineralization of the thiocarbamate herbicide molinate by a defined bacterial mixed culture. Environmental Microbiology, 5, 944–953.

    Article  CAS  Google Scholar 

  • Barreiros, L., Fernandes, A., Silva Ferreira, A. C., Pereira, H., Bastos, M. M. S. M., Manaia, C. M., et al. (2008). New insights into a bacterial metabolic and detoxifying association responsible for the mineralization of the thiocarbamate herbicide molinate. Microbiology, 154, 1038–1046.

    Article  CAS  Google Scholar 

  • Cerejeira, M. J., Viana, P., Batista, S., Pereira, T., Silva, E., Valerio, M. J., et al. (2003). Pesticides in Portuguese surface and ground waters. Water Research, 37, 1055–1063.

    Article  CAS  Google Scholar 

  • Claver, A., Ormad, P., Rodriguez, L., & Ovelleiro, J. L. (2006). Study of the presence of pesticides in surface waters in the Ebro river basin (Spain). Chemosphere, 64, 1437–1443.

    Article  CAS  Google Scholar 

  • Cochran, R. C., Formoli, T. A., Pfeifer, K. F., & Aldous, C. N. (1997). Characterization of risks associated with the use of molinate. Regulatory Toxicology and Pharmacology, 25, 146–157.

    Article  CAS  Google Scholar 

  • Coelho, C., Oliveira, A. S., Pereira, M. F., & Nunes, O. C. (2006). The influence of activated carbon surface properties on the adsorption of the herbicide molinate and the bio-regeneration of the adsorbent. Journal of Hazardous Materials, 138, 343–349.

    Article  CAS  Google Scholar 

  • Correia, P., Boaventura, R. A., Reis, M. A., & Nunes, O. C. (2006). Effect of operating parameters on molinate biodegradation. Water Research, 40, 331–340.

    Article  CAS  Google Scholar 

  • Dash, R. R., Balomajumder, C., & Kumar, A. (2009). Treatment of cyanide bearing water/wastewater by plain and biological activated carbon. Industrial & Engineering Chemistry Research, 48, 3619–3627.

    Article  CAS  Google Scholar 

  • Entezari, M. H., Ghows, N., & Chamsaz, M. (2006). Ultrasound facilitates and improves removal of Cd(II) from aqueous solution by the discarded tire rubber. Journal of Hazardous Materials, 131, 84–89.

    Article  CAS  Google Scholar 

  • Golovleva, L. A., Finkelstein, Z. I., Popovich, N. A., & Skryabin, G. K. (1981). Transformation of ordram by microorganisms. Izvestiia Akademii Nauk SSSR Seriia Biologicheskaia, 3, 348–358.

    Google Scholar 

  • Gomez-Gutierrez, A. I., Jover, E., Bodineau, L., Albaiges, J., & Bayona, J. M. (2006). Organic contaminant loads into the Western Mediterranean Sea: estimate of Ebro River inputs. Chemosphere, 65, 224–236.

    Article  CAS  Google Scholar 

  • Hatzinger, P. B., Fuller, M. E., Rungmakol, D., Schuster, R. L., & Steffan, R. J. (2004). Enhancing the attenuation of explosives in surface soils at military facilities: sorption-desorption isotherms. Environmental Toxicology and Chemistry, 23, 306–312.

    Article  CAS  Google Scholar 

  • Imai, Y., & Kuwatsuka, S. (1982). Degradation of the herbicide molinate in soils. Pesticide Science, 7, 487–497.

    CAS  Google Scholar 

  • Kershaw, D. S., Kulik, B. C., & Pamucku, S. (1997). Ground rubber: sorption media for ground water containing benzene and o-xylene. Journal of Geotechnical and Geoenvironmental Engineering, 123, 324–333.

    Article  CAS  Google Scholar 

  • Konstantinou, I. K., Zarkadis, A. K., & Albanis, T. A. (2001). Photodegradation of selected herbicides in various natural waters and soils under environmental conditions. Journal of Environmental Quality, 30, 121–130.

    Article  CAS  Google Scholar 

  • Kuster, M., López-de-Alda, M. J., Barata, C., Raldúa, D., & Barceló, D. (2008). Analysis of 17 polar to semi-polar pesticides in the Ebro river delta during the main growing season of rice by automated on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry. Talanta, 75, 390–401.

    Article  CAS  Google Scholar 

  • LeVan, M. D., Carta, G., & Yon, C. M. (1997). Adsorption and ion exchange. In R. H. Perry & D. W. Green (Eds.), Perry’s chemical engineers’ handbook (7th ed., pp. 36–37). New York: McGraw-Hill. (section 16).

    Google Scholar 

  • Lisi, R. D., Park, J. K., & Stier, J. C. (2004). Mitigating nutrient leaching with a sub-surface drainage layer of granulated tires. Waste Management, 24, 831–839.

    Article  CAS  Google Scholar 

  • Mabury, S. A., Cox, J. S., & Crosby, D. G. (1996). Environmental fate of rice pesticides in California. Reviews of Environmental Contamination and Toxicology, 147, 71–117.

    CAS  Google Scholar 

  • Manaia, C. M., Nogales, B., Weiss, N., & Nunes, O. C. (2004). Gulosibacter molinativorax gen. nov., sp. nov., a molinate degrading bacterium, and classification of “Brevibacterium helvolum” DSM 20419 as Pseudoclavibacter helvolus gen. nov., sp. nov. International Journal of Systematic and Evolutionary Microbiology, 54(3), 783–789.

    Article  CAS  Google Scholar 

  • Manchón-Vizuete, E., Macías-García, A., & Gisbert, A. N. (2004). Preparation of mesoporous and macroporous materials from rubber of tyre wastes. Microporous and Mesoporous Materials, 67, 35–41.

    Article  CAS  Google Scholar 

  • Miguel, G. S., Fowler, G. D., & Sollars, C. J. (2002). Adsorption of organic compounds from solution by activated carbons produced from waste tyre rubber. Separation Science and Technology, 37, 663–676.

    Article  Google Scholar 

  • Mulder, M. (1996). Basic principles of membrane technology (3rd ed.). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Othman, M. Z., Roddick, F. A., & Snow, R. (2001). Removal of dissolved organic compounds in fixed-bed columns: evaluation of low-rank coal adsorbents. Water Research, 35, 2943–2949.

    Article  CAS  Google Scholar 

  • Purakayastha, P. D., Pal, A., & Bandyopaghyay, M. (2003). Sorption of anionic surfactants on a fixed bed of rubber granules. International Journal of Environment and Pollution, 19, 421–429.

    Google Scholar 

  • Purakayastha, P. D., Pal, A., & Bandyopaghyay, M. (2005a). Adsorbent selection for anionic surfactant removal from water. Indian Journal of Chemical Technology, 12, 281–284.

    Google Scholar 

  • Purakayastha, P. D., Pal, A., & Bandyopaghyay, M. (2005b). Sorption kinetics of anionic surfactant on to waste tire rubber granules. Separation and Purification Technology, 46, 129–135.

    Article  CAS  Google Scholar 

  • Rangarajan, P., Sisk, P., & Bhattacharyya, D. (1999). Novel applications of scrap tire for organic sorption/separations. Clean Products and Processes, 1, 199–209.

    Google Scholar 

  • Silva, M., Fernandes, A., Manaia, C. M., Mendes, A., & Nunes, O. C. (2004). Preliminary feasibility study for the use of an adsorption/bio-regeneration system for molinate removal from effluents. Water Research, 38, 2677–2684.

    Article  CAS  Google Scholar 

  • Soderquist, C. J., Bowers, J. B., & Crosby, D. G. (1977). Dissipation of molinate in a rice field. Journal of Agricultural and Food Chemistry, 25, 940–945.

    Article  CAS  Google Scholar 

  • Sudo, M., Kunimatsu, T., & Okubo, T. (2002). Concentration and loading of pesticide residues in Lake Biwa basin (Japan). Water Research, 36, 315–329.

    Article  CAS  Google Scholar 

  • Thomas, V. M., & Holt, C. L. (1980). The degradation of [14C]molinate in soil under flooded and nonflooded conditions. Journal of Environmental Science and Health Part B, 15, 475–484.

    Article  CAS  Google Scholar 

  • Tsuda, T., Kojima, M., Harada, H., Nakajima, A., & Aoki, S. (1998). Pesticides and their oxidation products in water and fish from rivers flowing into lake Biwa. Bulletin of Environmental Contamination and Toxicology, 60, 151–158.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank engineer Estima Reis, from Fapobol (Porto, Portugal), for providing the SBR compound samples, Recipneu (Sines, Portugal) for providing the tire rubber granules, and Herbex, Produtos Químicos S.A. for supplying molinate. This work was partially financially supported by Fundação para a Ciência e a Tecnologia from Ministério da Ciência e do Ensino Superior, Portugal (projects POCTI/34274/AGR/00 and PPCDT/59836/AMB/04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fernão D. Magalhães or Olga C. Nunes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho, D., Mendes, A., Magalhães, F.D. et al. Treatment of Waters Containing the Thiocarbamate Herbicide Molinate through an Adsorption/Bio-Regeneration System using a Low-Cost Adsorbent. Water Air Soil Pollut 207, 289–298 (2010). https://doi.org/10.1007/s11270-009-0136-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0136-3

Keywords

Navigation