Skip to main content
Log in

Macronutrient (N, P, K) and Redoximorphic Metal (Fe, Mn) Allocation in Leersia oryzoides (Rice Cutgrass) Grown Under Different Flood Regimes

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2012

Abstract

Vegetated drainages are an effective method for removal of pollutants associated with agricultural runoff. Leersia oryzoides, a plant common to agricultural ditches, may be particularly effective in remediation; however, research characterizing responses of L. oryzoides to flooding are limited. Soil reduction resulting from flooding can change availability of nutrients to plants via changes in chemical species (e.g., increasing solubility of Fe). Additionally, plant metabolic stresses resulting from reduced soils can decrease nutrient uptake and translocation. The objective of this study was to characterize belowground and aboveground nutrient allocation of L. oryzoides subjected to various soil moisture regimes. Treatments included: a well-watered and well-drained control; a continuously saturated treatment; a 48-h pulse-flood treatment; and a partially flooded treatment in which water level was maintained at 15 cm below the soil surface and flooded to the soil surface for 48 h once a week. Soil redox potential (Eh, mV) was measured periodically over the course of the 8-week experiment. At experiment termination, concentrations of Kjeldahl nitrogen, phosphorus (P), potassium (K), iron (Fe), and manganese (Mn) were measured in plant tissues. All flooded treatments demonstrated moderately reduced soil conditions (Eh < 350 mV). Plant Kjeldahl nitrogen concentrations demonstrated no treatment effect, whereas P and K concentrations decreased in aboveground portions of the plant. Belowground concentrations of P, Mn, and Fe were significantly higher in flooded plants, likely due to the increased solubility of these nutrients resulting from the reductive decomposition of metal–phosphate complexes in the soil and subsequent precipitation in the rhizosphere. These results indicate that wetland plants may indirectly affect P, Mn, and Fe concentrations in surface waters by altering local trends in soil oxidation–reduction chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aerts, R., & Chapin, F. S., III. (2000). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. In A. H. Fitter & D. G. Raffaelli (Eds.), Advances in ecological research (Vol. 30, pp. 1–67). San Diego: Academic.

    Chapter  Google Scholar 

  • Armstrong, W., & Beckett, P. M. (1987). Internal aeration and the development of stellar anoxia in submerged roots: A multishelled mathematical model combining axial diffusion of oxygen in the cortex with radial losses to the stele, the wall layers, and the rhizosphere. New Phytologist, 105, 221–245.

    Article  Google Scholar 

  • Begg, C. B. M., Kirk, G. J. D., Mackenzie, A. F., & Neue, H. U. (1994). Root-induced iron oxidation and pH changes in the lowland rice rhizosphere. New Phytologist, 128, 469–477.

    Article  CAS  Google Scholar 

  • Birgand, F., Skaggs, R. W., Chescheir, G. M., & Gilliam, J. W. (2007). Nitrogen removal in streams of agricultural catchments—A literature review. Critical Reviews in Environmental Science and Technology, 37, 381–487.

    Article  CAS  Google Scholar 

  • Bouldin, J. L., Farris, J. L., Moore, M. T., & Cooper, C. M. (2004). Vegetative and structural characteristics of agricultural drainages in the Mississippi Delta landscapes. Environmental Pollution, 132, 403–411.

    Article  CAS  Google Scholar 

  • Chapin, F. S., III, Schulze, E., & Mooney, H. A. (1990). The ecology and economics of storage in plants. Annual Review of Ecology and Systematics, 21, 423–447.

    Article  Google Scholar 

  • Chen, S. Z., Low, P. F., & Roth, C. B. (1987). Relation between potassium fixation and the oxidation state of octahedral iron. Soil Science of America Journal, 51, 82–96.

    Article  CAS  Google Scholar 

  • Chen, H., Qualls, R. G., & Blank, R. R. (2005). Effect of soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium. Aquatic Botany, 82, 250–268.

    Article  CAS  Google Scholar 

  • Cooper, C. M., Moore, M. T., Bennett, E. R., Smith, S., Jr., Farris, J. L., Milam, C. D., et al. (2004). Innovative uses of vegetated drainage ditches for reducing agricultural runoff. Water Science and Technology, 49, 117–123.

    CAS  Google Scholar 

  • Cronk, J. K., & Fennessy, S. B. (2001). Wetland plants: Biology and ecology. Boca Raton: CRC.

    Book  Google Scholar 

  • Dassonville, F., & Renault, P. (2002). Interactions between microbial processes and geochemical transformations under anaerobic conditions: A review. Agronomie, 22, 51–68.

    Article  Google Scholar 

  • Day, J. W., Jr., Arancibia, A. Y., Mitsch, W. J., Lara-Dominguez, A. L., Day, J. N., Ko, J., et al. (2003). Using ecotechnology to address water quality and wetland habitat loss problems in the Mississippi basin: A hierarchical approach. Biotechnology Advances, 22, 135–159.

    Article  Google Scholar 

  • Deaver, E., Moore, M. T., Cooper, C. M., & Knight, S. S. (2005). Efficiency of three aquatic macrophytes in mitigating nutrient runoff. International Journal of Ecology and Environmental Sciences, 31, 1–7.

    Google Scholar 

  • DeLaune, R. D., Jugsujinda, A., & Reddy, K. R. (1999). Effect of root oxygen stress on phosphorus uptake by cattail. Journal of Plant Nutrition, 22, 459–466.

    Article  CAS  Google Scholar 

  • Drew, M. C. (1997). Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 223–250.

    Article  CAS  Google Scholar 

  • Dunne, E. J., McKee, K. A., Clark, M. W., Grunwald, S., & Reddy, K. R. (2007). Phosphorus in agricultural ditch soil and potential implications for water quality. Journal of Soil and Water Conservation, 62, 244–252.

    Google Scholar 

  • Ehrenfeld, J. G., Ravit, B., & Elgersma, K. (2005). Feedback in the plant–soil system. Annual Review of Environment and Resources, 30, 75–115.

    Article  Google Scholar 

  • Farmer, L. M., Pezeshki, S. R., & Larsen, D. (2005). Effects of hydroperiod and iron on Typha latifolia grown in P-enhanced medium. Journal of Plant Nutrition, 28, 1175–1190.

    Article  CAS  Google Scholar 

  • Fitter, A. H., & Hay, R. K. M. (2002). Environmental physiology of plants (3rd ed.). San Diego: Academic.

    Google Scholar 

  • Gibbs, J., & Greenway, H. (2003). Mechanism of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Functional Plant Biology, 30, 1–47.

    Article  CAS  Google Scholar 

  • Gibbs, J., Turner, D. W., Armstrong, W., Darwent, M. J., & Greenway, H. (1998). Response to oxygen deficiency in primary maize roots. I. Development of oxygen deficiency in the stele reduces radial solute transport to the xylem. Australian Journal of Plant Physiology, 25, 745–758.

    Article  CAS  Google Scholar 

  • Greenway, H., & Gibbs, J. (2003). Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to essential processes. Functional Plant Biology, 30, 999–1036.

    Article  CAS  Google Scholar 

  • Jiang, C., Fan, X., Cui, G., & Zhang, Y. (2007). Removal of agricultural non-point pollutants by ditch wetlands: Implications for lake eutrophication control. Hydrobiologia, 581, 319–327.

    Article  CAS  Google Scholar 

  • Jones, D. L., Hodge, A., & Kuzyakov, Y. (2004). Plant and mycorrhizal regulation of rhizodeposition. New Phytologist, 163, 459–480.

    Article  CAS  Google Scholar 

  • Jungk, A. O. (2002). Dynamics of nutrient movement at the soil–root interface. In Y. Waisel, A. Eshel & U. Kafkafi (Eds.), Plant roots: The hidden half (3rd ed., pp. 587–616). New York: Marcel Dekker.

    Google Scholar 

  • Kalra, Y. (1998). Handbook of reference methods for plant analysis. Boca Raton: CRC.

    Google Scholar 

  • Kirk, G. J. D., & Du, L. V. (1997). Changes in rice root architecture, porosity, and oxygen and proton release under phosphorus deficiency. New Phytologist, 135(2), 191–200.

    Article  CAS  Google Scholar 

  • Koch, G. W., Schulze, E. D., Percival, F., Mooney, H. A., & Chu, C. (1988). The nitrogen balance of Raphanus sativus x raphanistrum plants. II. Growth, nitrogen redistribution and photosynthesis under NO 3 deprivation. Plant, Cell and Environment, 11, 755–767.

    Article  Google Scholar 

  • Kröger, R., Holland, M. M., Moore, M. T., & Cooper, C. M. (2007). Plant senescence: A mechanism for nutrient release in temperate agricultural wetlands. Environmental Pollution, 146, 114–119.

    Article  Google Scholar 

  • Kröger, R., Cooper, C. M., & Moore, M. T. (2008). A preliminary hydrological investigation into an innovative controlled drainage strategy in surface drainage ditches: Low grade weirs. Agricultural Water Management, 95, 678–687.

    Article  Google Scholar 

  • Langmuir, D. (1997). Aqueous geochemistry. Upper Saddle River: Prentice Hall, Simon and Schuster.

    Google Scholar 

  • Liang, Y., Zhu, Y. G., Xia, Y., Li, Z., & Ma, Y. (2006). Iron plaque enhances phosphorus uptake by rice (Oryza sativa) growing under varying phosphorus and iron concentrations. Annals of Applied Biology, 149, 305–312.

    Article  CAS  Google Scholar 

  • Logan, K. A. B., Thomas, R. J., & Raven, J. A. (2000). Effect of ammonium and phosphorus supply on H+production in gel by two tropical forage grasses. Journal of Plant Nutrition, 23, 41–54.

    Article  CAS  Google Scholar 

  • Meeks, R. L. (1969). The effect of drawdown date on wetland plant succession. Journal of Wildlife Management, 33, 817–821.

    Article  Google Scholar 

  • Meuleman, A. F. M., & Beltman, B. (1993). The use of vegetated ditches for water quality improvement. Hydrobiologia, 253, 375.

    Article  Google Scholar 

  • Moore, M. T., Cooper, C. M., & Farris, J. L. (2005). Drainage ditches. In J. Lehr & J. Keeley (Eds.), Water encyclopedia: Surface and agricultural water (pp. 87–92). New York: Wiley.

    Google Scholar 

  • Needelman, B. A., Kleinman, P. J. A., Allen, A. L., & Strock, J. S. (2007a). Managing agricultural drainage ditches for water quality protection. Journal of Soil and Water Conservation, 62, 171–178.

    Google Scholar 

  • Needelman, B. A., Ruppert, D. E., & Vaughan, R. E. (2007b). The role of ditch soil formation and redox biogeochemistry in mitigating nutrient and pollutant losses from agriculture. Journal of Soil and Water Conservation, 62, 207–215.

    Google Scholar 

  • Neuman, G., & Römhel, V. (2002). Root-induced changes in the availability of nutrients in the rhizosphere. In A. Eshel, U. Kafkafi & Y. Waisel (Eds.), Plant roots: The hidden half (3rd ed., pp. 617–649). New York: Marcel Dekker.

    Google Scholar 

  • Patrick, W. H., Jr., & DeLaune, R. D. (1977). Chemical and biological redox systems affecting nutrient availability in the coastal wetlands. Geoscience and Man, 18, 131–137.

    Google Scholar 

  • Peterson, S. B., & Teal, J. M. (1996). The role of plants in ecologically engineered wastewater treatment systems. Ecological Engineering, 6, 137–148.

    Article  Google Scholar 

  • Pezeshki, S. R. (2001). Wetland plant responses to soil flooding. Environmental and Experimental Botany, 46, 299–312.

    Article  Google Scholar 

  • Pezeshki, S. R., DeLaune, R. D., & Anderson, P. H. (1999). Effects of flooding on elemental uptake and biomass allocation on seedlings of three bottomland species. Journal of Plant Nutrition, 22, 1481–1494.

    Article  CAS  Google Scholar 

  • Pierce, S. C., Pezeshki, S. R., & Moore, M. T. (2007). Ditch plant response to variable flooding: a case study of Leersia oryzoides (rice cutgrass). Journal of Soil and Water Conservation, 62, 216–225.

    Google Scholar 

  • Reddy, K. R., & DeLaune, R. D. (2008). Biogeochemistry of wetlands (p. 816). Boca Raton: CRC.

    Book  Google Scholar 

  • Reddy, K. R., D’Angelo, E. M., & DeBusk, T. A. (1989). Oxygen transport through aquatic macrophytes: The role in wastewater treatment. Journal of Environmental Quality, 19, 261–267.

    Article  Google Scholar 

  • Richardson, J. L., & Vepraskas, M. J. (2001). Wetland soils: Genesis, hydrology, landscapes, and classification. Boca Raton: CRC.

    Google Scholar 

  • Rubio, G., Oesterheld, M., Alvarez, C. R., & Lavado, R. S. (1997). Mechanisms for the increase in phosphorus uptake of water-logged plants: Soil phosphorus availability, root morphology and uptake kinetics. Oecologia, 112, 150–155.

    Article  Google Scholar 

  • Saleque, A., & Kirk, G. J. D. (1995). Root-induced solubilization of phosphate in the rhizosphere of lowland rice. New Phytologist, 129, 325–336.

    Article  CAS  Google Scholar 

  • Shahandeh, H., Hossner, L. R., & Turner, F. T. (2003). Phosphorus relationships to manganese and iron in rice soils. Soil Science, 168, 489–500.

    CAS  Google Scholar 

  • Sharpley, A. N., Krogstad, T., Kleinman, P. J. A., Haggard, B., Shigaki, F., & Saporito, L. S. (2007). Managing natural processes in drainage ditches for nonpoint source phosphorus control. Journal of Soil and Water Conservation, 62, 197–206.

    Google Scholar 

  • Soil Conservation Service. (1989). Soil survey: Shelby County, Tennessee. Washington, DC: Division of Soil Conservation Service, USDA.

    Google Scholar 

  • Strock, J. S., Dell, C. J., & Schmidt, J. P. (2007). Managing natural processes in drainage ditches for nonpoint source nitrogen control. Journal of Soil and Water Conservation, 62, 188–196.

    Google Scholar 

  • Szilas, C. P., Borggaard, K., Hansen, H. C. B., & Rauer, J. (1998). Potential iron and phosphate mobilization during flooding of soil material. Water, Air, and Soil Pollution, 106, 97–109.

    Article  CAS  Google Scholar 

  • Thiebaut, G., & Muller, S. (2003). Linking phosphorus pools of water, sediment and macrophytes in running waters. Annals of Limnology—International Journal of Limnology, 39, 307–316.

    Article  Google Scholar 

  • Thomson, C. J., Marschner, H., & Römheld, V. (1993). Effect of nitrogen fertilizer form on pH of the bulk soil an rhizosphere, and on the growth, phosphorus, and micronutrient uptake of bean. Journal of Plant Nutrition, 16, 493–506.

    Article  CAS  Google Scholar 

  • Vadas, P. A., Srinivasan, M. S., Kleinman, P. J. A., Schmidt, J. P., & Allen, A. L. (2007). Hydrology and groundwater nutrient concentrations in a ditch-drained agroecosystem. Journal of Soil and Water Conservation, 62, 178–188.

    Google Scholar 

  • Wang, Z., & Li, S. (2004). Effects of nitrogen and phosphorus fertilization on plant growth and nitrate accumulation in vegetables. Journal of Plant Nutrition, 27, 539–556.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel C. Pierce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierce, S.C., Moore, M.T., Larsen, D. et al. Macronutrient (N, P, K) and Redoximorphic Metal (Fe, Mn) Allocation in Leersia oryzoides (Rice Cutgrass) Grown Under Different Flood Regimes. Water Air Soil Pollut 207, 73–84 (2010). https://doi.org/10.1007/s11270-009-0120-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0120-y

Keywords

Navigation