Skip to main content
Log in

Exposure to Bioaerosol from Sewage Systems

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Bioaerosols are conglomerates of biological particles such as bacterial and fungal propagules and are produced in sewers and sewage treatment plants through evaporation and turbulence. In order to evaluate the hazard to employees in wastewater treatment plants, airborne microorganisms were measured at two different sites in the sewage systems and in the grit chamber of a treatment plant. Two additional samples were taken during high-pressure cleaning in the relief sewer. Outdoor air samples served as background values. Airborne microorganisms were collected using the impaction method with the MAS-100® and the impingement method with the SKC Biosampler®. The concentrations of coliform bacteria as well as the fungal species Aspergillus fumigatus were determined in addition to mesophilic bacteria counts (cfu/m³). The highest concentrations of mesophilic bacteria were found in the encased grit chamber. Coliform bacteria were found infrequently only in the aerosol of the sewage systems; A. fumigatus was detected at all sampling sites both indoors as well as outdoors. During high-pressure cleaning, total bacteria concentrations reached up to 4.0 × 104 cfu/m3, coliforms up to 3.0 × 103 cfu/m3. These results show that personnel protective measures should be recommended to decrease the exposure risk to biological particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Bauer, H., Fuerhacker, M., Zibuschka, F., Schmid, H., & Puxbaum, H. (2002). Bacteria and fungi in aerosols generated by two different types of wastewater treatment plants. Water Research, 36, 3965–3970.

    Article  CAS  Google Scholar 

  • Bosseler, B., Redmann, A. (2000). Endbericht zu den Untersuchungen über die Infektionsgefahr durch Austrag von Krankheitserregern aus Einsteigschächten von Kanalisationen durch Aerosole. Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen.

  • Brandi, G., Sisti, M., & Amagliani, G. (2000). Evaluation of the environmental impact of microbial aerosols generated by wastewater treatment plants utilizing different aeration systems. Journal of Applied Microbiology, 88, 845–852.

    Article  CAS  Google Scholar 

  • Cyprowski, M., Buczynska, A., & Szadkowska-Stanczyk, I. (2006). Exposure assessment to bioaerosols among sewer workers. Medycyna Pracy, 57(6), 525–530.

    Google Scholar 

  • Feller, W. (1959). An introduction to the probability theory and its application (p. 1 75). New York: Wiley.

    Google Scholar 

  • Fernando, N. L., & Fedorak, P. M. (2005). Changes at an activated sludge sewage treatment plant alter the numbers of airborne aerobic microorganisms. Water Research, 39, 4597–4608.

    Article  CAS  Google Scholar 

  • Forcier, F. (2002). Biosolids and bioaerosols: the current situation. Quebec Ministry of Environment.

  • Fracchia, L., Pietronave, S., Rinaldi, M., Martinotti, M. G. (2006). Site-related airborne biological hazard and seasonal variations in two wastewater treatment plants. Water Research, 40, 1985–1984.

    Article  CAS  Google Scholar 

  • Gujer, W. (1999). Siedlungswasserwirtschaft. Berlin: Springer.

    Google Scholar 

  • Haas, D., Reinthaler, F. F., Wüst, G., Posch, J., Ruckenbauer, G., & Marth, E. (2002). Comparative investigations of airborne culturable microorganisms in sewage treatment plants. Central European Journal of Public Health, 10(1–2), 6–10.

    CAS  Google Scholar 

  • Jouzaitis, A., Willeke, K., Grinshpun, S. A., & Donnelly, J. (1994). Impaction onto a glass slide or agar versus impingement into a liquid for the collection and recovery of airborne microorganisms. Applied and Environmental Microbiology, 60(3), 861–870.

    Google Scholar 

  • Jussel, H. S., Dierich, M. P., & Baumgartner, E. (1990). Kontamination bei der Arbeit in Kläranlagen. Arbeitsmedizinisches Zentrum Hall in Tirol, 1–24.

  • Kainz, H., Kauch, P., & Renner, H. (2002). Siedlungswasserbau und Abfallwirtschaft, 1. Wien: Auflage MANZ Verlag.

    Google Scholar 

  • Karpinsky, C., Scheidt-Illig, R., Wenzel, E., Welker, F., Friedrich, I., Bartsch, R., et al. (2000). Untersuchungen zur Infektionsgefährdung bei Tätigkeiten in Abwasserableitungssystemen. Gefahrstoffe—Reinhaltung der Luft, 60(10), 413–421.

    CAS  Google Scholar 

  • Karra, S., & Katsivela, E. (2007). Microorganisms in bioaerosol emissions from wastewater treatment plants during summer at a Mediterranean site. Water Research, 41, 1355–1365.

    Article  CAS  Google Scholar 

  • Köck, M., Schlacher, R., Pichler-Semmelrock, F. P., Reinthaler, F. F., Eibel, U., Marth, E., et al. (1998). Airborne microorganisms in the metropolitan area of Graz, Austria. Central European Journal of Public Health, 6, 25–28.

    Google Scholar 

  • Lin, X., Reponen, T. A., Willeke, K., Grinshpun, S. A., Foarde, K. K., & Ensor, D. S. (1999). Long-term sampling of airborne bacteria and fungi into a non-evaporating liquid. Atmospheric Environment, 33, 4291–4298.

    Article  CAS  Google Scholar 

  • Lin, X., Reponen, T., Willeke, K., Wang, Z., Grinshpun, S. A., & Trunov, M. (2000). Survival of airborne microorganisms during swirling aerosol collection. Aerosol Science and Technology, 32(3), 184–196.

    Article  CAS  Google Scholar 

  • Linsel, G. (2001). Bioaerosole—Entstehung und biologische Wirkungen. Beitrag für den Workshop "Sicherer Umgang mit biologischen Arbeitsstoffen und Zytostatika". Braunschweig, 12./13.03.

  • Marthi, B., Fieland, V. P., Walter, M., & Seidler, R. J. (1990). Survival of bacteria during aerosolization. Applied and Environmental Microbiology, 56(11), 3463–3467.

    CAS  Google Scholar 

  • Mudrack, K., & Kunst, S. (1994). Biologie der Abwasser-Reinigung. 4. überarbeitete Auflage. Stuttgart: Gustav Fischer Verlag.

    Google Scholar 

  • Neumann, H. D., Buxtrup, M., Balfanz, J., & Lohmeyer, M. (2002). Belastungen durch biologische Arbeitsstoffe bei der Kanalreinigung. Gefahrstoffe—Reinhaltung der Luft, 62(9), 371–380.

    Google Scholar 

  • Nübling, M. (2000). Merkblätter Biologische Arbeitsstoffe. idgF. 14. Ergänzungslieferung, November 2004. Hofmann, F. Jäckel, R. Kapitel IV-4.2.11.1. ecomed SICHERHEIT, Verlagsgruppe Hüthig Jehle Rehm GmbH. Landsberg.

  • Oppliger, A., Hilfiker, S., & Vu Duc, T. (2005). Influence of seasons and sampling strategy on assessment of bioaerosols in sewage treatment plants in Switzerland. Annals of Occupational Hygiene, 49(5), 393–400.

    Article  CAS  Google Scholar 

  • Owen, M. K., Ensor, D. S., & Sparks, L. E. (1992). Airborne particle sizes and sources found in indoor air. Atmospheric Environment, 12(26A), 2149–2162.

    Google Scholar 

  • Pascual, L., Perez-Luz, S., Yanez, M. A., Santamaria, A., Gibert, K., Salgot, M., et al. (2003). Bioaerosol emission from wastewater treatment plants. Aerobiologia, 19, 261–270.

    Article  Google Scholar 

  • Prazmo, Z., Krysinska-Traczyk, E., Skorska, C., Sitkowska, J., Cholewa, G., & Dutkiewicz, J. (2003). Exposure to bioaerosols in a municipal sewage treatment plant. Annals of Agricultural and Environmental Medicine, 10, 241–248.

    Google Scholar 

  • Rylander, R. (1999). Health effects among workers in sewage treatment plants. Occupational & Environmental Medicine, 56, 354–357.

    Article  CAS  Google Scholar 

  • Schribertschnig, W., Renner, H., Kauch, E. P., Schlachter, H., & Nemeček, E. P. (1993). Siedlungswasserbau 2; Abwasser- und Abfalltechnik. 4. überarbeitete und erweiterte Auflage. Wien: MANZ Verlag.

    Google Scholar 

  • Steinberg, R. (2000). Merkblätter Biologische Arbeitsstoffe. idgF. 14. Ergänzungslieferung, November 2004. Hofmann, F. Jäckel, R. Kapitel IV-4.2.11.1. ecomed SICHERHEIT, Verlagsgruppe Hüthig Jehle Rehm GmbH. Landsberg.

  • Teltsch, B., Shuval, H. I., & Tadmor, J. (1980). Die-Away kinetics of aerosolized bacteria from sprinkler application of wastewater. Applied and Environmental Microbiology, 39(6), 1191–1197.

    CAS  Google Scholar 

  • Willeke, K., Lin, X., & Grinshpun, S. A. (1998). Improved aerosol collection by combined impaction and centrifugal motion. Aerosol Science and Technology, 28(5), 439–456.

    Article  CAS  Google Scholar 

  • Wüst, G., Reinthaler, F. F., Haas, D. U., Marth, E. (1999). Vergleichende Untersuchungen luftgetragener, kultivierbarer Mikroorganismen an ausgewählten Standorten in der Abfallwirtschaft, der Nutztierhaltung und im Anwohnerbereich. In: Schriftenreihe des Vereins für Wasser-, Boden- und Lufthygiene: Stand von Wissenschaft, Forschung und Technik zu siedlungshygienischen Aspekten der Abfallentsorgung und – verwertung, Hrsg.: Th. Eikmann und R. Hofmann, Tagung 30, Langen, 30, 703–711.

Download references

Acknowledgements

This study was carried out with the financial support of the regional waste water authority of Austrian Government in Graz. We acknowledge the assistant of DI Dr. Maria Panholzer and DI Gerald Maurer. Technical measurement protocols were provided by the Institute of Urban Water Management and Landscape Water Engineering of the Technical University of Graz, Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doris Haas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haas, D., Unteregger, M., Habib, J. et al. Exposure to Bioaerosol from Sewage Systems. Water Air Soil Pollut 207, 49–56 (2010). https://doi.org/10.1007/s11270-009-0118-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0118-5

Keywords

Navigation