Skip to main content

Advertisement

Log in

Micropollutant Degradation in Wastewater Treatment: Experimental Parameter Estimation for an Extended Biokinetic Model

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

An experimental approach for estimating the parameters for an extended biokinetic model (Peev et al. 2004) of micropollutant removal in wastewater treatment is presented and exemplarily performed with 2,6-naphthalene disulfonate (2,6-NDSA) and benzothiazole sulfonate (BTSA) as model compounds. In particular, a set of short-term batch experiments, consisting of a micropollutant degradation experiment and a biomass decay experiment, were carried out. Both experiments comprise only the chemical analysis of micropollutant substrate concentrations over time. The experimental data were used to determine the biokinetic parameters by applying and verifying the methodology introduced in a previous publication (Schoenerklee and Peev, 2008). The results suggest that the model assumption of competent heterotrophic biomass utilizing the target micropollutant as growth substrate, gives a satisfactory description of the micropollutant biodegradation process by mixed bacterial cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

X:

Biomass (µg COD l−1)

S:

Substrate (µg COD l−1)

µ:

Growth rate (day−1)

µmax :

Maximum growth rate (day−1)

K s :

Saturation constant (µg COD l−1)

Y:

Growth yield

b:

Biomass decay rate (day−1)

t :

Time (day)

mp:

Micropollutant

0:

Initial value

References

  • Chang, W., & Criddle, C. S. (1997). Experimental evaluation of a model for cometabolism: prediction of simultaneous degradation of trichloroethylene and methane by a methanotrophic mixed culture. Biotechnology and Bioengineering, 56(5), 492–501. doi:10.1002/(SICI)1097-0290(19971205)56:5<492::AID-BIT3>3.0.CO;2-D.

    Article  CAS  Google Scholar 

  • Cowan, C. E., Larson, R. J., Feijtel, T. C. J., & Rapaport, R. A. (1993). An improved model for predicting the fate of consumer product chemicals in wastewater treatment plants (1993). Water Research, 27(4), 561–573. doi:10.1016/0043-1354(93)90165-E.

    Article  CAS  Google Scholar 

  • Criddle, C. S. (1993). The kinetics of co-metabolism. Biotechnology and Bioengineering, 41(11), 1048–1056. doi:10.1002/bit.260411107.

    Article  CAS  Google Scholar 

  • De Wever, H., Weiss, S., Reemtsma, T., Vereecken, J., Müller, J., Knepper, T., et al. (2007). Comparison of sulfonated and other micropollutants removal in membrane bioreactor and conventional wastewater treatment. Water Research, 41(4), 935–945. doi:10.1016/j.watres.2006.11.013.

    Article  Google Scholar 

  • Henze, M., Grady, C. P. L. J., Gujer, W., Marais, G. V. R., & Matsuo, T. (1987). Activated sludge model no.1. IWAQ, London: Scientific and Technical Report 2.

    Google Scholar 

  • Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M. C., & Marais, Gv R. (1995). Activated sludge model no. 2. IAWQ, London: IAWQ Scientific and Technical Report No. 3.

    Google Scholar 

  • Henze, M., Gujer, W., Mino, T., & Van Loosdrecht, M. C. M. (2000). Activated sludge models ASM1, ASM2, ASM2d and ASM3. London: IWA Publishing.

    Google Scholar 

  • Holmberg, A. (1982). On the practical identifiability of microbial growth models incorporating Michaelis-Menten type nonlinearities. Mathematical Biosciences, 62(1), 23–43. doi:10.1016/0025-5564(82)90061-X.

    Article  Google Scholar 

  • Jacobsen, B. N., & Arvin, E. (1995). Biodegradation kinetics and fate modelling of pentachlorophenol in bioaugmented activated sludge reactors. Water Research, 30(5), 1184–1194. doi:10.1016/0043-1354(95)00259-6.

    Article  Google Scholar 

  • Kloepfer, A., Jekel, M., & Reemtsma, T. (2005). Occurrence, sources and fate of benzothiazoles in municipal wastewater treatment plants. Environmental Science & Technology, 39, 3792–3798. doi:10.1021/es048141e.

    Article  CAS  Google Scholar 

  • Knepper, T. P., Barcelo, D., Lindner, K., Seel, P., Reemtsma, T., Ventura, F., et al. (2004). Removal of persistent polar pollutants through improved treatment of wastewater effluents (P-THREE). Water Science & Technology, 50(5), 195–202.

    CAS  Google Scholar 

  • Kot-Wasik, A., Dabrowska, D., & Namiesnik, J. (2004). The importance of degradation in the fate of selected organic compounds in the environment. Part I. General considerations. Polish Journal of Environmental Studies, 13(6), 607–616.

    CAS  Google Scholar 

  • Liu, C., & Zachara, J. M. (2001). Uncertainties of Monod kinetic parameters nonlinearly estimated from batch experiments. Environmental Science & Technology, 35(1), 133–141. doi:10.1021/es001261b.

    Article  CAS  Google Scholar 

  • Nyholm, N., Ingerslev, F., Berg, U. T., Pedersen, J. P., & Frimer-Larsen, H. (1996). Estimation of kinetic rate constants for biodegradation of chemicals in activated sludge wastewater treatment plants using short term batch experiments and μg/L range spiked concentrations. Chemosphere, 33(5), 851–864. doi:10.1016/0045-6535(96)00180-4.

    Article  CAS  Google Scholar 

  • Peev, M., Schönerklee, M., & De Wever, H. (2004). Modelling the degradation of low concentration pollutants in membrane bioreactors. Water Science & Technology, 50(5), 209–218.

    CAS  Google Scholar 

  • Petersen, B., Gernaey, K., & Vanrolleghem, P. A. (2001). Practical identifiability of model parameters by combined respirometric-titrimetric measurements. Water Science & Technology, 43(7), 347–355.

    CAS  Google Scholar 

  • Reemtsma, T., Weiss, S., Mueller, J., Petrovic, M., Gonzalez, S., Barcelo, D., et al. (2006). Polar pollutants entry into the water cycle by municipal wastewater: a European perspective. Environmental Science & Technology, 40, 5451–5458. doi:10.1021/es060908a.

    Article  CAS  Google Scholar 

  • Robinson, J. A., & Tiedje, J. M. (1983). Nonlinear estimation of Monod growth kinetic parameters from a single substrate depletion curve. Applied & Environmental Microbiology, 45(5), 1453–1458.

    CAS  Google Scholar 

  • Schoenerklee, M., & Peev, M. (2008). Parameter estimation in biokinetic degradation models in wastewater treatment—a novel approach relevant for micro-pollutant removal. Water, Air & Soil Pollution (2009), 196, 89–99. doi:10.1007/s11270-008-9759-z.

    Article  Google Scholar 

  • Toräng, L. (2003). Biodegradation rates of chemicals in surface water and groundwater assessed in batch simulation tests. PhD thesis. Environment & Resources DTU, Technical University of Denmark. ISBN 87-89220-83-8.

  • Weiss, S. (2007). Potential von Membranbioreaktoren zur Entfernung von polaren persistenten Spurenstoffen aus Kommunalabwasser. Dissertation, Technical University TU Berlin.

  • Weiss. S., Reemtsma, T. (2008). Membrane bioreactors for municipal wastewater treatment—a viable option to reduce the amount of polar pollutants discharged into surface waters? Water Res. On-line.

Download references

Acknowledgement

Part of the presented work was carried out within the framework of the project P-THREE financed under contract number EVK1-CT-2002-00116 by the European Commission (FP5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Schoenerklee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoenerklee, M., Peev, M., De Wever, H. et al. Micropollutant Degradation in Wastewater Treatment: Experimental Parameter Estimation for an Extended Biokinetic Model. Water Air Soil Pollut 206, 69–81 (2010). https://doi.org/10.1007/s11270-009-0087-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0087-8

Keywords