Abstract
An experimental approach for estimating the parameters for an extended biokinetic model (Peev et al. 2004) of micropollutant removal in wastewater treatment is presented and exemplarily performed with 2,6-naphthalene disulfonate (2,6-NDSA) and benzothiazole sulfonate (BTSA) as model compounds. In particular, a set of short-term batch experiments, consisting of a micropollutant degradation experiment and a biomass decay experiment, were carried out. Both experiments comprise only the chemical analysis of micropollutant substrate concentrations over time. The experimental data were used to determine the biokinetic parameters by applying and verifying the methodology introduced in a previous publication (Schoenerklee and Peev, 2008). The results suggest that the model assumption of competent heterotrophic biomass utilizing the target micropollutant as growth substrate, gives a satisfactory description of the micropollutant biodegradation process by mixed bacterial cultures.







Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Abbreviations
- X:
-
Biomass (µg COD l−1)
- S:
-
Substrate (µg COD l−1)
- µ:
-
Growth rate (day−1)
- µmax :
-
Maximum growth rate (day−1)
- K s :
-
Saturation constant (µg COD l−1)
- Y:
-
Growth yield
- b:
-
Biomass decay rate (day−1)
- t :
-
Time (day)
- mp:
-
Micropollutant
- 0:
-
Initial value
References
Chang, W., & Criddle, C. S. (1997). Experimental evaluation of a model for cometabolism: prediction of simultaneous degradation of trichloroethylene and methane by a methanotrophic mixed culture. Biotechnology and Bioengineering, 56(5), 492–501. doi:10.1002/(SICI)1097-0290(19971205)56:5<492::AID-BIT3>3.0.CO;2-D.
Cowan, C. E., Larson, R. J., Feijtel, T. C. J., & Rapaport, R. A. (1993). An improved model for predicting the fate of consumer product chemicals in wastewater treatment plants (1993). Water Research, 27(4), 561–573. doi:10.1016/0043-1354(93)90165-E.
Criddle, C. S. (1993). The kinetics of co-metabolism. Biotechnology and Bioengineering, 41(11), 1048–1056. doi:10.1002/bit.260411107.
De Wever, H., Weiss, S., Reemtsma, T., Vereecken, J., Müller, J., Knepper, T., et al. (2007). Comparison of sulfonated and other micropollutants removal in membrane bioreactor and conventional wastewater treatment. Water Research, 41(4), 935–945. doi:10.1016/j.watres.2006.11.013.
Henze, M., Grady, C. P. L. J., Gujer, W., Marais, G. V. R., & Matsuo, T. (1987). Activated sludge model no.1. IWAQ, London: Scientific and Technical Report 2.
Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M. C., & Marais, Gv R. (1995). Activated sludge model no. 2. IAWQ, London: IAWQ Scientific and Technical Report No. 3.
Henze, M., Gujer, W., Mino, T., & Van Loosdrecht, M. C. M. (2000). Activated sludge models ASM1, ASM2, ASM2d and ASM3. London: IWA Publishing.
Holmberg, A. (1982). On the practical identifiability of microbial growth models incorporating Michaelis-Menten type nonlinearities. Mathematical Biosciences, 62(1), 23–43. doi:10.1016/0025-5564(82)90061-X.
Jacobsen, B. N., & Arvin, E. (1995). Biodegradation kinetics and fate modelling of pentachlorophenol in bioaugmented activated sludge reactors. Water Research, 30(5), 1184–1194. doi:10.1016/0043-1354(95)00259-6.
Kloepfer, A., Jekel, M., & Reemtsma, T. (2005). Occurrence, sources and fate of benzothiazoles in municipal wastewater treatment plants. Environmental Science & Technology, 39, 3792–3798. doi:10.1021/es048141e.
Knepper, T. P., Barcelo, D., Lindner, K., Seel, P., Reemtsma, T., Ventura, F., et al. (2004). Removal of persistent polar pollutants through improved treatment of wastewater effluents (P-THREE). Water Science & Technology, 50(5), 195–202.
Kot-Wasik, A., Dabrowska, D., & Namiesnik, J. (2004). The importance of degradation in the fate of selected organic compounds in the environment. Part I. General considerations. Polish Journal of Environmental Studies, 13(6), 607–616.
Liu, C., & Zachara, J. M. (2001). Uncertainties of Monod kinetic parameters nonlinearly estimated from batch experiments. Environmental Science & Technology, 35(1), 133–141. doi:10.1021/es001261b.
Nyholm, N., Ingerslev, F., Berg, U. T., Pedersen, J. P., & Frimer-Larsen, H. (1996). Estimation of kinetic rate constants for biodegradation of chemicals in activated sludge wastewater treatment plants using short term batch experiments and μg/L range spiked concentrations. Chemosphere, 33(5), 851–864. doi:10.1016/0045-6535(96)00180-4.
Peev, M., Schönerklee, M., & De Wever, H. (2004). Modelling the degradation of low concentration pollutants in membrane bioreactors. Water Science & Technology, 50(5), 209–218.
Petersen, B., Gernaey, K., & Vanrolleghem, P. A. (2001). Practical identifiability of model parameters by combined respirometric-titrimetric measurements. Water Science & Technology, 43(7), 347–355.
Reemtsma, T., Weiss, S., Mueller, J., Petrovic, M., Gonzalez, S., Barcelo, D., et al. (2006). Polar pollutants entry into the water cycle by municipal wastewater: a European perspective. Environmental Science & Technology, 40, 5451–5458. doi:10.1021/es060908a.
Robinson, J. A., & Tiedje, J. M. (1983). Nonlinear estimation of Monod growth kinetic parameters from a single substrate depletion curve. Applied & Environmental Microbiology, 45(5), 1453–1458.
Schoenerklee, M., & Peev, M. (2008). Parameter estimation in biokinetic degradation models in wastewater treatment—a novel approach relevant for micro-pollutant removal. Water, Air & Soil Pollution (2009), 196, 89–99. doi:10.1007/s11270-008-9759-z.
Toräng, L. (2003). Biodegradation rates of chemicals in surface water and groundwater assessed in batch simulation tests. PhD thesis. Environment & Resources DTU, Technical University of Denmark. ISBN 87-89220-83-8.
Weiss, S. (2007). Potential von Membranbioreaktoren zur Entfernung von polaren persistenten Spurenstoffen aus Kommunalabwasser. Dissertation, Technical University TU Berlin.
Weiss. S., Reemtsma, T. (2008). Membrane bioreactors for municipal wastewater treatment—a viable option to reduce the amount of polar pollutants discharged into surface waters? Water Res. On-line.
Acknowledgement
Part of the presented work was carried out within the framework of the project P-THREE financed under contract number EVK1-CT-2002-00116 by the European Commission (FP5).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Schoenerklee, M., Peev, M., De Wever, H. et al. Micropollutant Degradation in Wastewater Treatment: Experimental Parameter Estimation for an Extended Biokinetic Model. Water Air Soil Pollut 206, 69–81 (2010). https://doi.org/10.1007/s11270-009-0087-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11270-009-0087-8
