Skip to main content
Log in

Increases in Growing Degree Days in the Alpine Desert of the San Luis Valley, Colorado

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Most alpine ecosystem climate change studies identify changes in biota, several report abiotic factors and conditions, few report temperature changes, and few to none discuss growing degree days (GDD) changes. This study provides results of data analysis on changes in number of GDD in the alpine desert of the San Luis Valley (SLV) whose community is dominated by an irrigated agricultural region. Analysis indicates significant increases (p < 0.05) in annual and growing season GDD10, GDD4.4 (potato), and GDD5.5 (alfalfa) during 1994–2007 compared to 1958–1993. With one exception, all stations experienced significant increases in mean annual daily GDD between 0.12 and 0.50 day−2 and growing season GDD day−2 0.21 and 0.81. Higher temperatures increase numbers of GDD, quickening growth of crops and maturity at the cost of reduced yield and quality. Increases in GDD indicate the Valley’s agricultural region and economy may experience negative impacts as yields decrease and water use increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aber, J. D., Ollinger, S. V., Federer, C. A., Beich, P., Goulden, M. L., Kicklighter, D. W., et al. (1995). Predicting the effects of climate change on water yield and forest production in the northeastern United States. Climate Research, 5, 207–222. doi:10.3354/cr005207.

    Article  Google Scholar 

  • Adams, R. M. (1989). Global climate change and agriculture: an economic perspective. American Journal of Agricultural Economics, 71, 1272–1279. doi:10.2307/1243120.

    Article  Google Scholar 

  • Adams, R. M., Rosenzweig, C., Peart, R. M., Ritchie, J. T., McCarl, B. A., Glyer, J. D., et al. (1990). Global climate change and US agriculture. Nature, 345, 219–224. doi:10.1038/345219a0.

    Article  Google Scholar 

  • Alexander, L. V., X. Zhang, T. C. Peterson, J. Caesar, B. Gleason, A. Klein Tank, M.Haylock, D. Collins, B. Trewin, F. Rahimzadeh, A. Tagipour, P. Ambenje, K.Rupa Kumar, J. Revadekar, G. Griffiths, L. Vincent, D. Stephenson, J. Burn, E.Aguilar, M. Brunet, M. Taylor, M. New, P. Zhai, M. Rusticucci, J. L. Vazquez-Aguirre. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, ▪▪▪, 111.

  • Arnell, N. C. (1999). Climate change and global water resources. Global Environmental Change, 9, S31–S49. doi:10.1016/S0959-3780(99)00017-5.

    Article  Google Scholar 

  • Arnell, N. C. (2004). Climate change and global water resources: SRES emissions and socio-economic scenarios. Global Environmental Change, 14, 31–52. doi:10.1016/j.gloenvcha.2003.10.006.

    Article  Google Scholar 

  • Bale, J. S., Masters, G. J., Hodkinson, I. D., Awmack, C., Bezemer, T. M., Brown, V. K., et al. (2002). Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology, 8, 1–16. doi:10.1046/j.1365-2486.2002.00451.x.

    Article  Google Scholar 

  • Beaubien, E. G., & Freeland, H. J. (2000). Spring phenology trends in Alberta, Canada: links to ocean temperature. International Journal of Biometeorology, 44, 53–59. doi:10.1007/s004840000050.

    Article  CAS  Google Scholar 

  • Bezemer, T. M., Jones, T. H., & Knight, K. J. (1998). Long-term effects of elevated CO2 and temperature on populations of the peach potato aphid Myzus persicae and its parasitoid Aphidius matricariae. Oecologia, 116, 128–135. doi:10.1007/s004420050571.

    Article  Google Scholar 

  • Boland, G. J., Melzer, M. S., Hopkin, A., Higgins, V., & Nassuth, A. (2004). Climate change and plant diseases in Ontario. Canadian Journal of Plant Pathology, 26, 335–350.

    Google Scholar 

  • Bonsal, B. R., Zhang, X., Vincent, L. A., & Hogg, W. D. (2001). Characteristics of daily and extreme temperatures over Canada. Journal of Climate, 14, 1959–1976.

    Article  Google Scholar 

  • Bradley, N. L., Leopold, A. C., Ross, J., & Huffaker, W. (1999). Phenological changes reflect climate change in Wisconsin. in Proceedings of the National Academy of Sciences, 96, 9701–9704.

    Article  CAS  Google Scholar 

  • Brasier, C. M., & Scott, J. K. (1994). European oak declines and global warming: a theoretical assessment with special reference to the activity of Phytophthora cinnamomi. EPPO Bulletin, 24, 221–232. doi:10.1111/j.1365-2338.1994.tb01063.x.

    Article  Google Scholar 

  • Breazeale, D., Kettle, R., & Munk, G.Fact Sheet 99-71. http://www.unce.unr.edu/publications/files/ag/other/fs9971.pdf. Last accessed 6/24/2008.

  • Brown, J. L., Shou-Hsien, L., & Bhagabati, N. (1999). Long-term trend toward earlier breeding in an American bird: a response to global warming? in Proceedings of the National Academy of Sciences, 96, 5565–5569.

    Article  CAS  Google Scholar 

  • Bucher, A., & Dessens, J. (1991). Secular trends of surface temperature at an elevated observatory in the Pyrenees. Journal of Climate, 4, 859–868. doi:10.1175/1520-0442(1991)004<0859:STOSTA>2.0.CO;2.

    Article  Google Scholar 

  • Buishand, T.A. 1981. The analysis of homogeneity of long-term rainfall records in the Netherlands. K.N.M.I. Scientific report 81-7, The Netherlands, 42 p.

  • Cannell, M. G. R., & Smith, R. I. (1983). Thermal time, chill days and prediction of budburst in Picea sitchensis. Journal of Applied Ecology, 20, 951–963. doi:10.2307/2403139.

    Article  Google Scholar 

  • Cayan, D. R., Kammerdiener, S. A., Dettinger, M. D., Caprio, J. M., & Peterson, D. H. (2001). Changes in the onset of spring in the western United States. Bulletin of the American Meteorological Society, 82, 399–415. doi:10.1175/1520-0477(2001)082<0399:CITOOS>2.3.CO;2.

    Article  Google Scholar 

  • Chakraborty, S., Tiedemann, A. V., & Teng, P. S. (2000). Climate change: potential impact on plant diseases. Environmental Pollution, 108, 317–326. doi:10.1016/S0269-7491(99)00210-9.

    Article  CAS  Google Scholar 

  • Colbach, N., Lucas, P., & Meynard, J.-M. (1997). Influence of crop management on take-all development and disease cycles on winter wheat. Phytopathology, 87, 26–32. doi:10.1094/PHYTO.1997.87.1.26. http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=18,945,150&dopt=Abstract.

    Article  CAS  Google Scholar 

  • Craddock, J. M. (1979). Methods of comparing annual rainfall records for climatic purposes. Weather, 34, 332–346.

    Google Scholar 

  • Crick, H. Q. P., Dudley, C., Glue, D. E., & Thomson, D. L. (1997). UK birds are laying eggs earlier. Nature, 388, 526. doi:10.1038/41453.

    Article  CAS  Google Scholar 

  • CSU(a).Colorado State University Cooperative Extension – San Luis Valley Research Center. 2003. San Luis Valley crop statistics summary. http://www.colostate.edu/Dept/SLVRC/. Last accessed 9/23/2006.

  • CSU(b). Colorado State University Cooperative Extension – San Luis Valley Research Center. 2003 Agriculture: Lifeblood of the San Luis Valley. http://www.colostate.edu/Dept/SLVRC/. Last accessed 9/23/2006.

  • de Reaumur, R.A.F. 1,735: Observations du thermometre, faites a Paris pendant l’annee, compares avec celles qui ont ete faites sous la ligne, a l’lsle de France, a Alger et en quelques-unes de nos isles de I’Amerique. Memoires de l’Academie des Sciences, 545.

  • Derscheid, L., & Lytle, W.1981. (pdf 2002) http://sdces.sdstate.edu/ces_website/hit_counter.cfm?item=FS522&id=607. Last accessed 6/24/2008.

  • Dettinger, M. D., & Cayan, D. R. (1995). Large-scale atmospheric forcing of recent trends toward early snowmelt runoff in California. Journal of Climate, 8, 606–623. doi:10.1175/1520-0442(1995)008<0606:LSAFOR>2.0.CO;2.

    Article  Google Scholar 

  • Diaz, H. F., & Bradley, R. S. (1997). Temperature variations during the last century at high elevation sites. Climatic Change, 36, 253–279. doi:10.1023/A:1005335731187.

    Article  Google Scholar 

  • Dunn, P. O., & Winkler, D. W. (1999). Climate change has affected the breeding date of tree swallows throughout North America, in Proceedings. Biological Sciences, 266, 2487–2490. http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=10,693,819&dopt=Abstract.

    Google Scholar 

  • Easterling, W. E., Crosson, P. R., Rosenburg, N. J., McKenney, M. S., Katz, L. A., & Lemon, K. M. (1993). Paper 2. Agricultural impacts of and responses to climate change in the Missouri–Iowa–Nebraska–Kansas (MINK) region. Climatic Change, 24, 23–61. doi:10.1007/BF01091476.

    Article  Google Scholar 

  • Finnerty, B., & Ramirez, J.A.1995. Impact assessment study of climate change on evapotranspiration and irrigated agriculture in the San Luis Valley, Colorado. from AWRA 31st Annual Conference and Symposia, Houston, TX.

  • Fischer, G., Frohberg, K., Parry, M.L., & Rosenzweig, C.1996. The potential effects of climate change on world food production and security in Global climate change and agricultural production. Direct and indirect effects of changing hydrological, pedological and plant physiological processes, edited by F. Bazzaz and W. Sombroek. Published by the Food and Agriculture Organization of the United Nations and John Wiley & Sons, Chichester, U.K.

  • Fleming, R. A., & Candau, J.-N. (1998). Influences of climatic change on some ecological processes of an insect outbreak system in Canada’s boreal forests and the implications for biodiversity. Environmental Monitoring and Assessment, 49, 235–249. doi:10.1023/A:1005818108382.

    Article  Google Scholar 

  • Folland, C. K., Rayner, N. A., Brown, S. J., Smith, T. M., Shen, S. S. P., Parker, D. E., et al. (2001). Global temperature change and its uncertainties since 1,861. Geophysical Research Letters, 28, 2621–2624. doi:10.1029/2001GL012877.

    Article  Google Scholar 

  • Frank, A. B., & Hofmann, L. (1989). Relationship among grazing management, growing degree-days, and morphological development for native grasses on the Northern Great Plains. Journal of Range Management, 42, 199–202. doi:10.2307/3899472.

    Article  Google Scholar 

  • Giorgi, F., Shields Brodeur, C., & Bates, G. T. (1994). Regional climate change scenarios over the United States produced with a nested regional climate model. Journal of Climate, 7, 375–399. doi:10.1175/1520-0442(1994)007<0375:RCCSOT>2.0.CO;2.

    Article  Google Scholar 

  • Grundy, A. C., Phelps, K., Reader, R. J., & Burston, S. (2000). Modelling the germination of Stellaria media using the concept of hydrothermal time. The New Phytologist, 148, 433–444. doi:10.1046/j.1469-8137.2000.00778.x.

    Article  Google Scholar 

  • Hansen, J., & Lebedeff, S. (1987). Global trends of measured surface air temperature. Journal of Geophysical Research, 92, 13345–13372. doi:10.1029/JD092iD11p13345.

    Article  Google Scholar 

  • Hansen, J., Ruedy, R., Sato, M., Imhoff, M., Lawrence, W., Easterling, D., et al. (2001). A closer look at United States and global surface temperature change. Journal of Geophysical Research, 106, 23947–23963. doi:10.1029/2001JD000354.

    Article  Google Scholar 

  • Hansen, J., Makiko, S., Reto, R., Lo, K., Lea, D. W., & Medina-Elizade, M. (2006). Global temperature change. in Proceedings of the National Academy of Sciences of the United States of America, 103, 14288–14293.

    Article  CAS  Google Scholar 

  • Hartz, T. K., & Moore, F. D., III. (1978a). Prediction of potato yield using temperature and insolation data. American Potato Journal, 55, 431–436. doi:10.1007/BF02852146.

    Article  Google Scholar 

  • Hartz, T. K., & Moore, F. D. (1978b). Prediction of potato yield using temperature and insolation data. American Journal of Potato Research, 55, 431–436. doi:10.1007/BF02852146.

    Article  Google Scholar 

  • Hassall, C., Thompson, D. J., French, G. C., & Harvey, I. F. (2007). Historical changes in the phenology of British Odonata are related to climate. Global Change Biology, 13, 933–941. doi:10.1111/j.1365-2486.2007.01318.x.

    Article  Google Scholar 

  • Hijmansa, R. J., Forbesb, G. A., & Walker, T. S. (2000). Estimating the global severity of potato late blight with GIS-linked disease forecast models. Plant Pathology, 49, 697–705. doi:10.1046/j.1365-3059.2000.00511.x.

    Article  Google Scholar 

  • IPCC.2001: Climate Change 2001: The scientific basis. Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change. Houghton, J.T.,Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson (eds.). Cambridge University Press, Cambridge, United Kingdom, 881pp.

  • IPCC.2007: Climate Change 2007: Synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A.(eds.)]. IPCC, Geneva, Switzerland, 104 pp.

  • Karl, T. R., Kukla, G., Razuvayev, V. N., Changery, M. J., Quayle, R. G., Heim, R. R., et al. (1991). Global warming: evidence for asymmetric diurnal temperature change. Geophysical Research Letters, 18, 2253–2256. doi:10.1029/91GL02900.

    Article  Google Scholar 

  • Keeling, C. D., Chin, J. F. S., & Whorf, T. P. (1996). Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature, 382, 146–149. doi:10.1038/382146a0.

    Article  CAS  Google Scholar 

  • Kim, D.-S., Lee, J.-H., & Yiem, M.-S. (2000). Spring emergence pattern of Carposina sasakii (Lepidoptera: Carposinidae) in apple orchards in Korea and its forecasting models based on degree-days. Environmental Entomology, 29, 1188–1198.

    Article  Google Scholar 

  • King, G. (2007). The hottest and coldest places in the conterminous United States. Yearbook of the Association of Pacific Coast Geographers, 69, 101–114. doi:10.1353/pcg.2007.0008.

    Article  Google Scholar 

  • Losey, J. E., & Vaughan, M. (2006). The economic value of ecological services provided by insects. Bioscience, 56, 311–323. doi:10.1641/0006-3568(2006)56[311:TEVOES]2.0.CO;2.

    Article  Google Scholar 

  • MacInnes, C. D., Dunn, E. H., Rusch, D. H., Cooke, F., & Cooch, G. (1990). Advancement of goose nesting dates in the Hudson Bay Region, 1951–1986. Canadian Field Naturalist, 104, 295–297.

    Google Scholar 

  • Manzer, F. E., Gudmestad, N. C., & Nelson, G. A. (1987). Factors affecting infection, disease development, and symptom expression of bacterial ring rot. American Journal of Potato Research, 64, 671–676.

    Article  Google Scholar 

  • McCarty, J. P. (2001). Ecological consequences of recent climate change. Conservation Biology, 15, 320–331.

    Article  Google Scholar 

  • McCleery, R. H., & Perrins, C. M. (1998). temperature and egg-laying trends. Nature, 391, 30–31. doi:10.1038/34073.

    Article  CAS  Google Scholar 

  • Menne, M., & Duchon, C. E. (2000). A method for monthly detection of inhomogeneities and errors in daily maximum and minimum temperatures. Journal of Atmospheric and Oceanic Technology, 18, 1136–1149. doi:10.1175/1520-0426(2001)018<1136:AMFMDO>2.0.CO;2.

    Article  Google Scholar 

  • Menzel, A., & Fabian, P. (1999). Growing season extended in Europe. Nature, 397, 659–660. doi:10.1038/17709.

    Article  CAS  Google Scholar 

  • Mix, K., Lopes, V.L., & Rast, W. (2008). Annual and Growing Season Climate Changes in the Alpine Desert of the San Luis Valley, Colorado., submitted to. The Journal of Applied Meteorology and Climatology.

  • Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., & Nemani, R. R. (1997). Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698–702. doi:10.1038/386698a0.

    Article  CAS  Google Scholar 

  • NCDC http://www.ncdc.noaa.gov/oa/climate/research/2005/ann/global.html#Gtemp. Last accessed 6/25/2008.

  • Ojeda-Bustamante, W., Sifuentes-Ibarra, E., Slack, D. C., & Carrillo, M. (2004). Generalization of irrigation scheduling parameters using the growing degree days concept: application to a potato crop. Irrigation and Drainage, 53, 251–261.

    Article  Google Scholar 

  • Page, E. S. (1955). A test for a change in a parameter occurring at an unknown point. Biometrika, 42, 523–527.

    CAS  Google Scholar 

  • Page, E. S. (1957). On problems in which a change in a parameter occurs at an unknown point. Biometrika, 44, 248–252.

    Google Scholar 

  • Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637–669.

    Article  Google Scholar 

  • Pettitt, A. N. (1979). A non-parametric approach to the change-point problem. Applied Statistics, 28, 126–135.

    Article  Google Scholar 

  • Porter, J. H., Parry, M. L., & Carter, T. R. (1991). The potential effects of climatic change on agricultural insect pests. Agriculture and Forest Meteorology, 57, 221–240.

    Article  Google Scholar 

  • Pscheidt, J. W., & Stevenson, W. R. (1988). The critical period for control of early blight (Alternaria solani) of potato. American Journal of Potato Research, 65, 425–438.

    Article  Google Scholar 

  • Ramankutty, N., Foley, J. A., Norman, J., & Mcsweeney, K. (2002). The global distribution of cultivable lands: current patterns and sensitivity to possible climate change. Global Ecology and Biogeography, 11, 377–392.

    Article  Google Scholar 

  • Ramirez, J. A., & Finnerty, B. (1996). CO2 and temperature effects on evapotranspiration and irrigated agriculture. Journal of Irrigation and Drainage Engineering, 122, 155–163.

    Article  Google Scholar 

  • Rebetez, M., & Dobbertin, M. (2004). Climate change may already threaten Scots pine stands in the Swiss Alps. Theoretical and Applied Climatology, 79, 1–9.

    Article  Google Scholar 

  • Reilly, J., Tubiello, F., McCarl, B., Abler, D., Darwin, R., Fuglie, K., et al. (2003). U.S. agriculture and climate change: new results. Climatic Change, 57, 43–69.

    Article  Google Scholar 

  • Rosenzweig, C., A. Iglesias, X.B. Yang, P. R. Epstein, E. Chivian, 2000. Climate change and U.S. agriculture: The impacts of warming and extreme weather events on productivity, plant diseases, and pests. Center For Health And The Global Environment, http://chge.med.harvard.edu/publications/index.html. Last accessed 8/25/2008.

  • Salinger, M. J., & Mullan, A. B. (1999). New Zealand climate: temperature and precipitation variations and their links with atmospheric circulation 1930–1994. International Journal of Climatology, 19, 1049–1071.

    Article  Google Scholar 

  • Schimmelpfennig, D., J. Lewandrowski, J. Reilly, M. Tsigas, and I. Parry. 1996. Agricultural adaptation to climate change: Issues of long-run sustainability. Agricultural Economic Report No. (AER740) 68 pp.

  • Singh, B., El Maayar, M., Andre, P., Bryant, C. R., & Thouez, J.-P. (1998). Impacts of a GHG-induced climate change on crop yields: effects of acceleration in maturation, moisture stress and optimal temperature. Climatic Change, 38, 51–86.

    Article  Google Scholar 

  • Slater, E. M. (1999). First-egg date fluctuations for the pied flycatcher Ficedula hypoleuca in the woodlands of mid-Wales in the twentieth century. Ibis, 141, 497–499.

    Article  Google Scholar 

  • SLVDG-San Luis Valley Development Group. (2002). Comprehensive economic development strategy. http://www.slvdrg.org/ceds_historic.php. Last accessed 4/2009.

  • Snyder, R. L., Spano, D., Cesaraccio, C., & Duce, P. (1999). Determining degree-day thresholds from field observations. International Journal of Biometeorology, 42, 177–182.

    Article  Google Scholar 

  • Sombroek W. G. and R. Gommes. 1996. The climate change—agriculture conundrum in Global climate change and agricultural production. Direct and indirect effects of changing hydrological, pedological and plant physiological processes, edited by F. Bazzaz and W. Sombroek. Published by the Food and Agriculture Organization of the United Nations and Wiley, Chichester, U.K.

  • Taylor, W. http://www.variation.com/cpa/tech/changepoint.html. Last accessed 6/15/2008.

  • Thuiller, W., Lavorel, S., Araujo, M. B., Sykes, M. T., & Prentice, I. C. (2005). Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Science, 102, 8245–8250.

    Article  CAS  Google Scholar 

  • Visser, M. E., & Both, C. (2005). Shifts in phenology due to global climate change: the need for a yardstick. Proceedings of the Royal Society B: Biological Sciences, 272, 2561–2569.

    Article  Google Scholar 

  • Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., et al. (2002). Ecological responses to recent climate change. Nature, 416, 389–395.

    Article  CAS  Google Scholar 

  • Weber, R. O., Talkner, P., & Stefanicki, G. (1994). Asymmetric diurnal temperature change in the Alpine region. Geophysical Research Letters, 21, 673–676.

    Article  Google Scholar 

  • Whittaker, J. B., & Tribe, N. P. (1996). An altitudinal transect as an indicator of responses of a spittlebug (Auchenorrhyncha: Cercopidae) to climate change. European Journal of Entomology, 93, 319–324.

    Google Scholar 

  • Winkel, W., & Hudde, H. (1997). Long-term trends in reproductive traits of tits (Parus major, P. caeruleus) and pied flycatchers Ficedula hypoleuca. Journal of Avian Biology, 28, 187–190.

    Article  Google Scholar 

  • Woiwod, I. P. (1997). Detecting the effects of climate change on Lepidoptera. Journal of Insect Conservation, 1, 149–158.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Mix.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mix, K., Rast, W. & Lopes, V.L. Increases in Growing Degree Days in the Alpine Desert of the San Luis Valley, Colorado. Water Air Soil Pollut 205, 289–304 (2010). https://doi.org/10.1007/s11270-009-0074-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0074-0

Keywords

Navigation